Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31447
標題: 以差異顯示反轉錄聚合酵素連鎖反應探討抗病辣椒種原 (AVRDC PBC932, Capsicum chinense) 果實對辣椒炭疽菌 (Colletotrichum acutatum) 的抗性
Resistance of pepper accession AVRDC PBC932 (Capsicum chinense) fruits to Colletotrichum acutatum analyzed by DD-RT-PCR
作者: 曹經華
Tsao, Ching-Hua
關鍵字: anthracnose
炭疽病
chili pepper
DD-RT-PCR
gene expression
real-time RT-PCR
resistance
辣椒
差異顯示反轉錄聚合酵素連鎖反應
即時反轉錄聚合酵素連鎖反應
基因表現
抗病
出版社: 植物病理學系所
引用: 行政院農委會會計室編著。2008。農業統計年報。行政院農業委員會。65頁。 黃振文、孫守恭。1998。植物病害彩色圖鑑。世維出版社。台中市,160頁。 Adikaram, N., Brown, A., and Swinburne, T. 1983. Observations on infection of Capsicum annuum fruit by Glomerella cingulata and Colletotrichum capsici. Trans. Brit. Mycol. Soc. 80:395-401. Agrios, G.N. 2005. How pathogens attack plants. Pages 175-248 in: Plant Pathology. 5th ed. Academic Press, San Diego, CA., USA. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402. An, S., Sohn, K., Choi, H., Hwang, I., Lee, S., and Hwang, B. 2008. Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. Planta 228:61-78. AVRDC. (2003). Progress Report 2002. pp. 29-30. AVRDC-the World Vegetable Center, Shanhua, Taiwan. Bailey, B., Dean, J., and Anderson, J. 1990. An ethylene biosynthesis-inducing endoxylanase elicits electrolyte leakage and necrosis in Nicotiana tabacum cv Xanthi leaves. Plant Physiol. 94:1849. Bailey, B., Korcak, R., and Anderson, J. 1992a. Alterations in Nicotiana tabacum L. cv Xanthi cell membrane function following treatment with an ethylene biosynthesis-inducing endoxylanase. Plant Physiol. 100:749. Bailey, J., O''Connell, R., Pring, R., and Nash, C. 1992b. Infection strategies of Colletotrichum species. Pages 88-120 in: Colletotrichum: Biology, Pathology and Control. J. A. Bailey and J. A. Jeger, eds. CAB Int., Wallingford, UK. Bentolila, S., Alfonso, A., and Hanson, M. 2002. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc. Natl. Acad. Sci. USA 99:10887. Blein, J., Milat, M., and Ricci, P. 1991. Responses of cultured tobacco cells to cryptogein, a proteinaceous elicitor from Phytophthora cryptogea: possible plasmalemma involvement. Plant Physiol. 95:486. Bonas, U., Schulte, R., Fenselau, S., Minsavage, G.V., Staskawicz, B.J., and Stall, R.E. 1990. Isolation of a gene cluster from Xanthomonas campestris pv. vesicatoria that determines pathogenicity and the hypersensitive response on pepper and tomato. Mol. Plant-Microbe Interact. 4:81-88. Castillo, A., Kong, L., Hanley-Bowdoin, L., and Bejarano, E. 2004. Interaction between a geminivirus replication protein and the plant sumoylation system. Virology 78:2758. Cheong, N.E., Choi, Y.O., Kim, W.Y., Bae, I.S., Cho, M.J., Hwang, I., Kim, J.W., and Lee, S.Y. 1997. Purification and characterization of an antifungal PR-5 protein from pumpkin leaves. Mol. Cells 7:214-219. Conti, L., Price, G., O''Donnell, E., Schwessinger, B., Dominy, P., and Sadanandom, A. 2008. Small ubiquitin-like modifier proteases OVERLY TOLERANT TO SALT1 and-2 regulate salt stress responses in Arabidopsis. Plant Cell 20:2894. Dean, J., Gamble, H., and Anderson, J. 1989. The ethylene biosynthesis-inducing xylanase: its induction in Trichoderma viride and certain plant pathogens. Phytopathology 79:1071-1078. Despres, C., Chubak, C., Rochon, A., Clark, R., Bethune, T., Desveaux, D., and Fobert, P. 2003. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15:2181. Fils-Lycaon, B.R., Wiersma, P.A., Eastwell, K.C., and Sautiere, P. 1996. A cherry protein and its gene, abundantly expressed in ripening fruit, have been identified as thaumatin-like. Plant Physiol 111:269-273. Fobert, P., and Despres, C. 2005. Redox control of systemic acquired resistance. Curr. Opin. Plant Biol. 8:378-382. Geiss-Friedlander, and Melchior, F. 2007. Concepts in sumoylation: a decade on. Mol. Cell Biol. 8:947-956. Gelhaye, E., Rouhier, N., Navrot, N., and Jacquot, J. 2005. The plant thioredoxin system. Annu. Rev. Plant Biol. 62:24-35. Giovannoni, J. 1993. Molecular biology of fruit developmental and ripening. Pages 253-287 in: Methods in Plant Molecular Biology. J. Bryant ed. Academic Press, New York. Hanania, U., Furman-Matarasso, N., Ron, M., and Avni, A. 1999. Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death. Plant J. 19:533-541. Harrold, A.v.d.B., and Takken, F.L.W. 2009. Does chromatin remodeling mark systemic acquired resistance? Trends Plant Sci. 14:286-294. Heun, P. 2007. SUMOrganization of the nucleus. Curr. Opin. Cell Biol. 19:350-355. Higuchi, R., Fockler, C., Dollinger, G., and Watson, R. 1993. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Nat. Biotechnol. 11:1026-1030. Ikeda, Y., Kobayashi, Y., Yamaguchi, A., Abe, M., and Araki, T. 2007. Molecular basis of late-flowering phenotype caused by dominant epi-alleles of the FWA locus in Arabidopsis. Plant Cell Physiol. 48:205. Iriarte, M., and Corneils, G.R. 1998. YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Mol. Microbiol. 29:915-929. Jeon, N., Baskaran, H., Dertinger, S., Whitesides, G., Van De Water, L., and Toner, M. 2002. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20:826-830. Keith, C., Hoang, D., Barrett, B., Feigelman, B., Nelson, M., Thai, H., and Baysdorfer, C. 1993. Partial sequence analysis of 130 randomly selected maize cDNA clones. Plant Physiol. 101:329. Kim, Y., Min, J., Kang, B., Van Bach, N., Choi, W., Park, E., and Kim, H. 2007. Analyses of the less benzimidazole-sensitivity of the isolates of Colletotrichum spp. causing the anthracnose in pepper and strawberry. Plant Pathol. 23:187. Kim, Y.S., Oh, B.J., and Yang, J.M. 1999. Compatible and incompatible interactions between Colletotrichum gloeosporioides and pepper fruits. Phytoparasitica 27:97-106. Kim, Y.S., Park, J.Y., Kim, K.S., Ko, M.K., Cheong, S.J., and Oh, B.J. 2002. A thaumatin-like gene in nonclimacteric pepper fruits used as molecular marker in probing disease resistance, ripening, and sugar accumulation. Plant Mol. Biol. 49:125-135. Kim, Y.S., Lee, H.H., Ko, M.K., Song, C.E., Bae, C.Y., Lee, Y.H., and Oh, B.J. 2001. Inhibition of fungal appressorium formation by pepper (Capsicum annuum) esterase. Mol. Plant-Microbe Interact. 14:80-85. King, G., Turner, V., Hussey, C., Wurtele, E., and Lee, S. 1988. Isolation and characterization of a tomato cDNA clone which codes for a salt-induced protein. Plant Mol. Biol. 10:401-412. Kouchi, H., and Hata, S. 1993. Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol. Gen. Genet. 238:106-119. Adikaram, N., Brown, A., and Swinburne, T. 1983. Observations on infection of Capsicum annuum fruit by Glomerella cingulata and Colletotrichum capsici. Trans. Brit. Mycol. Soc. 80:395-401. Agrios, G.N. 2005. How pathogens attack plants. Pages 175-248 in: Plant Pathology. 5th ed. Academic Press, San Diego, CA., USA. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402. An, S., Sohn, K., Choi, H., Hwang, I., Lee, S., and Hwang, B. 2008. Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. Planta 228:61-78. AVRDC. (2003). Progress Report 2002. pp. 29-30. AVRDC-the World Vegetable Center, Shanhua, Taiwan. Bailey, B., Dean, J., and Anderson, J. 1990. An ethylene biosynthesis-inducing endoxylanase elicits electrolyte leakage and necrosis in Nicotiana tabacum cv Xanthi leaves. Plant Physiol. 94:1849. Bailey, B., Korcak, R., and Anderson, J. 1992a. Alterations in Nicotiana tabacum L. cv Xanthi cell membrane function following treatment with an ethylene biosynthesis-inducing endoxylanase. Plant Physiol. 100:749. Bailey, J., O''Connell, R., Pring, R., and Nash, C. 1992b. Infection strategies of Colletotrichum species. Pages 88-120 in: Colletotrichum: Biology, Pathology and Control. J. A. Bailey and J. A. Jeger, eds. CAB Int., Wallingford, UK. Bentolila, S., Alfonso, A., and Hanson, M. 2002. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc. Natl. Acad. Sci. USA 99:10887. Blein, J., Milat, M., and Ricci, P. 1991. Responses of cultured tobacco cells to cryptogein, a proteinaceous elicitor from Phytophthora cryptogea: possible plasmalemma involvement. Plant Physiol. 95:486. Bonas, U., Schulte, R., Fenselau, S., Minsavage, G.V., Staskawicz, B.J., and Stall, R.E. 1990. Isolation of a gene cluster from Xanthomonas campestris pv. vesicatoria that determines pathogenicity and the hypersensitive response on pepper and tomato. Mol. Plant-Microbe Interact. 4:81-88. Castillo, A., Kong, L., Hanley-Bowdoin, L., and Bejarano, E. 2004. Interaction between a geminivirus replication protein and the plant sumoylation system. Virology 78:2758. Cheong, N.E., Choi, Y.O., Kim, W.Y., Bae, I.S., Cho, M.J., Hwang, I., Kim, J.W., and Lee, S.Y. 1997. Purification and characterization of an antifungal PR-5 protein from pumpkin leaves. Mol. Cells 7:214-219. Conti, L., Price, G., O''Donnell, E., Schwessinger, B., Dominy, P., and Sadanandom, A. 2008. Small ubiquitin-like modifier proteases OVERLY TOLERANT TO SALT1 and-2 regulate salt stress responses in Arabidopsis. Plant Cell 20:2894. Dean, J., Gamble, H., and Anderson, J. 1989. The ethylene biosynthesis-inducing xylanase: its induction in Trichoderma viride and certain plant pathogens. Phytopathology 79:1071-1078. Despres, C., Chubak, C., Rochon, A., Clark, R., Bethune, T., Desveaux, D., and Fobert, P. 2003. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15:2181. Fils-Lycaon, B.R., Wiersma, P.A., Eastwell, K.C., and Sautiere, P. 1996. A cherry protein and its gene, abundantly expressed in ripening fruit, have been identified as thaumatin-like. Plant Physiol 111:269-273. Fobert, P., and Despres, C. 2005. Redox control of systemic acquired resistance. Curr. Opin. Plant Biol. 8:378-382. Geiss-Friedlander, and Melchior, F. 2007. Concepts in sumoylation: a decade on. Mol. Cell Biol. 8:947-956. Gelhaye, E., Rouhier, N., Navrot, N., and Jacquot, J. 2005. The plant thioredoxin system. Annu. Rev. Plant Biol. 62:24-35. Giovannoni, J. 1993. Molecular biology of fruit developmental and ripening. Pages 253-287 in: Methods in Plant Molecular Biology. J. Bryant ed. Academic Press, New York. Hanania, U., Furman-Matarasso, N., Ron, M., and Avni, A. 1999. Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death. Plant J. 19:533-541. Harrold, A.v.d.B., and Takken, F.L.W. 2009. Does chromatin remodeling mark systemic acquired resistance? Trends Plant Sci. 14:286-294. Heun, P. 2007. SUMOrganization of the nucleus. Curr. Opin. Cell Biol. 19:350-355. Higuchi, R., Fockler, C., Dollinger, G., and Watson, R. 1993. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Nat. Biotechnol. 11:1026-1030. Ikeda, Y., Kobayashi, Y., Yamaguchi, A., Abe, M., and Araki, T. 2007. Molecular basis of late-flowering phenotype caused by dominant epi-alleles of the FWA locus in Arabidopsis. Plant Cell Physiol. 48:205. Iriarte, M., and Corneils, G.R. 1998. YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Mol. Microbiol. 29:915-929. Jeon, N., Baskaran, H., Dertinger, S., Whitesides, G., Van De Water, L., and Toner, M. 2002. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20:826-830. Keith, C., Hoang, D., Barrett, B., Feigelman, B., Nelson, M., Thai, H., and Baysdorfer, C. 1993. Partial sequence analysis of 130 randomly selected maize cDNA clones. Plant Physiol. 101:329. Kim, Y., Min, J., Kang, B., Van Bach, N., Choi, W., Park, E., and Kim, H. 2007. Analyses of the less benzimidazole-sensitivity of the isolates of Colletotrichum spp. causing the anthracnose in pepper and strawberry. Plant Pathol. 23:187. Kim, Y.S., Oh, B.J., and Yang, J.M. 1999. Compatible and incompatible interactions between Colletotrichum gloeosporioides and pepper fruits. Phytoparasitica 27:97-106. Kim, Y.S., Park, J.Y., Kim, K.S., Ko, M.K., Cheong, S.J., and Oh, B.J. 2002. A thaumatin-like gene in nonclimacteric pepper fruits used as molecular marker in probing disease resistance, ripening, and sugar accumulation. Plant Mol. Biol. 49:125-135. Kim, Y.S., Lee, H.H., Ko, M.K., Song, C.E., Bae, C.Y., Lee, Y.H., and Oh, B.J. 2001. Inhibition of fungal appressorium formation by pepper (Capsicum annuum) esterase. Mol. Plant-Microbe Interact. 14:80-85. King, G., Turner, V., Hussey, C., Wurtele, E., and Lee, S. 1988. Isolation and characterization of a tomato cDNA clone which codes for a salt-induced protein. Plant Mol. Biol. 10:401-412. Kouchi, H., and Hata, S. 1993. Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol. Gen. Genet. 238:106-119. Adikaram, N., Brown, A., and Swinburne, T. 1983. Observations on infection of Capsicum annuum fruit by Glomerella cingulata and Colletotrichum capsici. Trans. Brit. Mycol. Soc. 80:395-401. Agrios, G.N. 2005. How pathogens attack plants. Pages 175-248 in: Plant Pathology. 5th ed. Academic Press, San Diego, CA., USA. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402. An, S., Sohn, K., Choi, H., Hwang, I., Lee, S., and Hwang, B. 2008. Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. Planta 228:61-78. AVRDC. (2003). Progress Report 2002. pp. 29-30. AVRDC-the World Vegetable Center, Shanhua, Taiwan. Bailey, B., Dean, J., and Anderson, J. 1990. An ethylene biosynthesis-inducing endoxylanase elicits electrolyte leakage and necrosis in Nicotiana tabacum cv Xanthi leaves. Plant Physiol. 94:1849. Bailey, B., Korcak, R., and Anderson, J. 1992a. Alterations in Nicotiana tabacum L. cv Xanthi cell membrane function following treatment with an ethylene biosynthesis-inducing endoxylanase. Plant Physiol. 100:749. Bailey, J., O''Connell, R., Pring, R., and Nash, C. 1992b. Infection strategies of Colletotrichum species. Pages 88-120 in: Colletotrichum: Biology, Pathology and Control. J. A. Bailey and J. A. Jeger, eds. CAB Int., Wallingford, UK. Bentolila, S., Alfonso, A., and Hanson, M. 2002. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc. Natl. Acad. Sci. USA 99:10887. Blein, J., Milat, M., and Ricci, P. 1991. Responses of cultured tobacco cells to cryptogein, a proteinaceous elicitor from Phytophthora cryptogea: possible plasmalemma involvement. Plant Physiol. 95:486. Bonas, U., Schulte, R., Fenselau, S., Minsavage, G.V., Staskawicz, B.J., and Stall, R.E. 1990. Isolation of a gene cluster from Xanthomonas campestris pv. vesicatoria that determines pathogenicity and the hypersensitive response on pepper and tomato. Mol. Plant-Microbe Interact. 4:81-88. Castillo, A., Kong, L., Hanley-Bowdoin, L., and Bejarano, E. 2004. Interaction between a geminivirus replication protein and the plant sumoylation system. Virology 78:2758. Cheong, N.E., Choi, Y.O., Kim, W.Y., Bae, I.S., Cho, M.J., Hwang, I., Kim, J.W., and Lee, S.Y. 1997. Purification and characterization of an antifungal PR-5 protein from pumpkin leaves. Mol. Cells 7:214-219. Conti, L., Price, G., O''Donnell, E., Schwessinger, B., Dominy, P., and Sadanandom, A. 2008. Small ubiquitin-like modifier proteases OVERLY TOLERANT TO SALT1 and-2 regulate salt stress responses in Arabidopsis. Plant Cell 20:2894. Dean, J., Gamble, H., and Anderson, J. 1989. The ethylene biosynthesis-inducing xylanase: its induction in Trichoderma viride and certain plant pathogens. Phytopathology 79:1071-1078. Despres, C., Chubak, C., Rochon, A., Clark, R., Bethune, T., Desveaux, D., and Fobert, P. 2003. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15:2181. Fils-Lycaon, B.R., Wiersma, P.A., Eastwell, K.C., and Sautiere, P. 1996. A cherry protein and its gene, abundantly expressed in ripening fruit, have been identified as thaumatin-like. Plant Physiol 111:269-273. Fobert, P., and Despres, C. 2005. Redox control of systemic acquired resistance. Curr. Opin. Plant Biol. 8:378-382. Geiss-Friedlander, and Melchior, F. 2007. Concepts in sumoylation: a decade on. Mol. Cell Biol. 8:947-956. Gelhaye, E., Rouhier, N., Navrot, N., and Jacquot, J. 2005. The plant thioredoxin system. Annu. Rev. Plant Biol. 62:24-35. Giovannoni, J. 1993. Molecular biology of fruit developmental and ripening. Pages 253-287 in: Methods in Plant Molecular Biology. J. Bryant ed. Academic Press, New York. Hanania, U., Furman-Matarasso, N., Ron, M., and Avni, A. 1999. Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death. Plant J. 19:533-541. Harrold, A.v.d.B., and Takken, F.L.W. 2009. Does chromatin remodeling mark systemic acquired resistance? Trends Plant Sci. 14:286-294. Heun, P. 2007. SUMOrganization of the nucleus. Curr. Opin. Cell Biol. 19:350-355. Higuchi, R., Fockler, C., Dollinger, G., and Watson, R. 1993. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Nat. Biotechnol. 11:1026-1030. Ikeda, Y., Kobayashi, Y., Yamaguchi, A., Abe, M., and Araki, T. 2007. Molecular basis of late-flowering phenotype caused by dominant epi-alleles of the FWA locus in Arabidopsis. Plant Cell Physiol. 48:205. Iriarte, M., and Corneils, G.R. 1998. YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Mol. Microbiol. 29:915-929. Jeon, N., Baskaran, H., Dertinger, S., Whitesides, G., Van De Water, L., and Toner, M. 2002. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20:826-830. Keith, C., Hoang, D., Barrett, B., Feigelman, B., Nelson, M., Thai, H., and Baysdorfer, C. 1993. Partial sequence analysis of 130 randomly selected maize cDNA clones. Plant Physiol. 101:329. Kim, Y., Min, J., Kang, B., Van Bach, N., Choi, W., Park, E., and Kim, H. 2007. Analyses of the less benzimidazole-sensitivity of the isolates of Colletotrichum spp. causing the anthracnose in pepper and strawberry. Plant Pathol. 23:187. Kim, Y.S., Oh, B.J., and Yang, J.M. 1999. Compatible and incompatible interactions between Colletotrichum gloeosporioides and pepper fruits. Phytoparasitica 27:97-106. Kim, Y.S., Park, J.Y., Kim, K.S., Ko, M.K., Cheong, S.J., and Oh, B.J. 2002. A thaumatin-like gene in nonclimacteric pepper fruits used as molecular marker in probing disease resistance, ripening, and sugar accumulation. Plant Mol. Biol. 49:125-135. Kim, Y.S., Lee, H.H., Ko, M.K., Song, C.E., Bae, C.Y., Lee, Y.H., and Oh, B.J. 2001. Inhibition of fungal appressorium formation by pepper (Capsicum annuum) esterase. Mol. Plant-Microbe Interact. 14:80-85. King, G., Turner, V., Hussey, C., Wurtele, E., and Lee, S. 1988. Isolation and characterization of a tomato cDNA clone which codes for a salt-induced protein. Plant Mol. Biol. 10:401-412. Kouchi, H., and Hata, S. 1993. Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol. Gen. Genet. 238:106-119. Kramer, A., Keller, W., Appel, B., and L rmann, R. 1984. The 5’terminus of the RNA moiety of Ui small nuclear ribonucleoprotein particles is required for the splicing of messenger RNA precursors. Cell 38:299-307. Kurepa, J., Walker, J., Smalle, J., Gosink, M., Davis, S., Durham, T., Sung, D., and Vierstra, R. 2003. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and-2 conjugates is increased by stress. J. Biol. Chem. 278:6862. Laloi, C., Mestres-Ortega, D., Marco, Y., Meyer, Y., and Reichheld, J. 2004. The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. Plant Physiol. 134:1006. Lee, J., Nam, J., Park, H.C., Na, G., Miura, K., Jin, J.B., Yoo, C.Y., Baek, D., Kim, D.H., Jeong, J.C., Kim, D., Lee, S.Y., Salt, D.E., Mengiste, T., Gong, Q., Ma, S., Bohnert, H.J., Kwak, S.S., Bressan, R.A., Hasegawa, P.M., and Yun, D.J. 2007. Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J. 49:79-90. Lefebvre, V., Kuntz, M., Camara, B., and Palloix, A. 1998. The capsanthin-capsorubin synthase gene: a candidate gene for the y locus controlling the red fruit colour in pepper. Plant Mol. Biol. 36:785-789. Liang, P., and Pardee, A.B. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967-971. Lois, L., Lima, C., and Chua, N. 2003. Small ubiquitin-like modifier modulates abscisic acid signaling inArabidopsis. Plant Cell 15:1347. Lyst, M., and Stancheva, I. 2007. A role for SUMO modification in transcriptional repression and activation. Biochem. Soc. Trans. 35:1389. Maule, A., and Ride, J. 1983. Cinnamate 4-hydroxylase and hydroxycinnamate: CoA ligase in wheat leaves infected with Botrytis cinerea. Phytochemistry 22:1113-1116. Melchior, F. 2000. SUMO--nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol. 16:591. Mercure, E., Kunoh, H., and Nicholson, R. 1995. Visualization of materials released from adhered, ungerminated conidia of Colletotrichum graminicola. Physio!. Mo!. P!ant Patho!. 46:121-135. Mo!endijk, A., Ruperti, B., Singh, M., Dovzhenko, A., Ditengou, F., Mi!ia, M., Westpha!, L., Rosah!, S., Soe!!ick, T., and Uhrig, J. 2008. A cysteine-rich receptor-!ike kinase NCRK and a pathogen-induced protein kinase RBK1 are Rop GTPase interactors. P!ant J. 53:909-923. Mou, Z., Fan, W., and Dong, X. 2003. Inducers of p!ant systemic acquired resistance regu!ate NPR1 function through redox changes. Ce!! 113:935-944. Nishiyama, A., Masutani, H., Nakamura, H., Nishinaka, Y., and Yodoi, J. 2001. Redox regu!ation by thioredoxin and thioredoxin-binding proteins. IUBMB !ife 52:29-33. Oh, B.J., Ko, M.K., Kim, K.S., Kim, Y.S., Lee, H.H., Jeon, W.B., and Im, K.H. 2003. Iso!ation of defense-re!ated genes differentia!!y expressed in the resistance interaction between pepper fruits and the anthracnose fungus Colletotrichum gloeosporioides. Mo!. Ce!!s 15:349-355. Orth, K., Pa!mer, L., Bao, Z., Stewart, S., Rudo!ph, A., B!iska, J., and Dixon, J. 1999. Inhibition of the mitogen-activated protein kinase kinase superfami!y by a Yersinia effector. Science 285:1920. Orth, K., Xu, Z., Mudgett, M., Bao, Z., Pa!mer, L., B!iska, J., Mange!, W., Staskawicz, B., and Dixon, J. 2000. Disruption of signa!ing by Yersinia effector YopJ, a ubiquitin-!ike protein protease. Science 290:1594. Parker, J.E., Ho!ub, E.B., Frost, L.N., Fa!k, A., Gunn, N.D., and Danie!s, M.J. 1996. Characterization of eds 1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by severa! different RPP genes. P!ant Ce!! 8:2033-2046. Peres, N., Timmer, L., Adaskaveg, J., and Corre!!, J. 2005. Lifesty!es of Colletotrichum acutatum. P!ant Dis. 89:784-796. Perfect, S., Hughes, H., O’Conne!!, R., and Green, J. 1999. Colletotrichum: A mode! genus for studies on patho!ogy and funga!-p!ant interactions. Funga! Genet. Bio!. 27:186-198. Pich!er, A., and Me!chior, F. 2002. Ubiquitin-re!ated modifier SUMO1 and nuc!eocytop!asmic transport. Traffic 3:381-387. Pieterse, C., and Van Loon, L. 2004. NPR1: the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol. 7:456-464. Pressey, R. 1997. Two isoforms of NP24: a thaumatin-like protein in tomato fruit. Phytochemistry 44:1241-1245. Prusky, D., and Saka, H. 1989. The role of epicuticular wax of avocado fruit in appressoria formation of Colletotrichum gloeosporio ides. Phytoparasitica 17: 140. Roberts, W., and Selitrennikoff, C. 1990. Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. Microbiology 136:1771. Roden, J., Eardley, L., Hotson, A., Cao, Y., and Mudgett, M. 2004. Characterization of the Xanthomonas AvrXv4 effector, a SUMO protease translocated into plant cells. Mol. Plant-Microbe Interact. 17:633-643. Ron, M., Kantety, R., Martin, G., Avidan, N., Eshed, Y., Zamir, D., and Avni, A. 2000. High-resolution linkage analysis and physical characterization of the EIX-responding locus in tomato. Theor. Appl. Genet. 100:184-189. Rouhier, N., Gelhaye, E., and Jacquot, J. 2004. Plant glutaredoxins: still mysterious reducing systems. Cell. Mol. Life Sci. 61:1266-1277. Ruiz-Medrano, R., Jimenez-Moraila, B., Herrera-Estrella, L., and Rivera-Bustamante, R. 1992. Nucleotide sequence of an osmotin-like cDNA induced in tomato during viroid infection. Plant Mol. Biol. 20:1199-1202. Saitoh, H., and Hinchey, J. 2000. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275:6252. Saracco, S., Miller, M., Kurepa, J., and Vierstra, R. 2007. Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiol. 145:119. Shiio, Y., and Eisenman, R.N. 2003. Histone sumoylation is associated with transcriptional repression. Proc. Natl. Acad. Sci. USA 100:13225-13230. Swinburne, T.R. 1976. Stimulants of germination and appressoria formation by Colletotrichum musae (Berk. & Curt.) Arx. in banana leachate. Phytopathol. Z. 87:74-90. Terras, F., Schoofs, H., Thevissen, K., Osborn, R., Vanderleyden, J., Cammue, B., and Broekaert, W. 1993. Synergistic enhancement of the antifungal activity of wheat and barley thionins by radish and oilseed rape 2S albumins and by barley trypsin inhibitors. Plant Physiol. 103:13 11. Tron, A., Bertoncini, C., Chan, R., and Gonzalez, D. 2002. Redox regulation of plant homeodomain transcription factors. J. Biol. Chem. 277:34800. Tyagi, S., and Kramer, F. 1996. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14:303-308. Verger, A., Perdomo, J., and Crossley, M. 2003. Modification with SUMO: a role in transcriptional regulation. EMBO J. 4:137. Verslues, P.E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., and Zhu, J.K. 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 45:523-539. Woo, T., Patel, B., Cinco, M., Smythe, L., Symonds, M., Norris, M., and Dohnt, M. 1998. Real-time homogeneous assay of rapid cycle polymerase chain reaction product for identification of Leptonema il/mi. Anal. Biochem. 259:112-117. Wu, S., Ham, K., Darvill, A., and Albersheim, P. 1997. Deletion of two endo- -1, 4-xylanase genes reveals additional isozymes secreted by the rice blast fungus. Mol. Plant-Microbe interact. 10:700-708. Zhu, B., Chen, T., and Li, P. 1993. Expression of an ABA-responsive osmotin-like gene during the induction of freezing tolerance in Solanum commersonhi. Plant Mol. Biol. 21:729-735.
摘要: 辣椒炭疽病在台灣夏季是影響辣椒產量的主要限制因子之一,在田間不論是辣椒的綠果或是紅果皆會受到炭疽菌的感染進而影響辣椒的商品價值,在台灣以炭疽菌Colletotrichum acutatum的危害最為嚴重。亞蔬-世界蔬菜中心 (AVRDC-The World Vegetable Center) 所育出之辣椒抗病種原 AVRDC PBC932 在接種試驗中對高毒力的炭疽菌分離株 (Coll-524) 呈感病反應,而對低毒力的炭疽菌分離株 (Coll-153) 呈抗病反應,因此本研究選用此辣椒和炭疽菌的系統來研究辣椒抗炭疽菌的反應。將 1 μl (ca. 500 conidia) 高毒力及低毒力的炭疽菌孢子懸浮液以微量注射接種 (microinjection) 的方式分別接種在 AVRDC PBC932 的綠果及紅果上,將接種後的果實置於維持溫度 25℃、相對濕度 80-100 % 的暗室中,於接種後 0、12、24、48 和 72 小時收取果實接種點周圍 1 平方公分的果實小塊並萃取其總量 RNA ,並以差異顯示反轉錄聚合酵素連鎖反應 (Differential display - reverse transcription - polymerase chain reaction, DD-RT-PCR) 技術篩選可能的防禦相關基因。將篩選出的差異性表現基因片段以反向北方雜合分析,可知所篩選出的 14 個可能的防禦相關基因在辣椒綠果接種低毒力炭疽菌後有 9 個基因被誘導表現,在紅果則有 4 個基因被誘導表現,而在辣椒綠果接種高毒力炭疽菌後有 5 個基因被誘導表現,在紅果則只有 3 個基因被誘導表現。選殖出的基因片段經資料庫比對分析和 SUMO mRNA 、第八介白素 (interleukin 8) 、硫氧化還原蛋白 (thioredoxin) 、果膠酯酶 (putative pectin methylesterase) 、辣椒紅素合成酶 (capsanthin/capsorubin synthase) 、脫水蛋白 (dehydrin) 及幾個未知功能蛋白質的序列相似度很高,其中 SUMO mRNA 和 thioredoxin 可能與辣椒抵抗炭疽菌的感染有關。將 SUMO 和 thioredoxin 基因以即時反轉錄聚合酵素連鎖反應 (real-time RT-PCR) 分析其在 AVRDC PBC932 果實接種高、低毒力炭疽菌 0、12、24、48 和 72 小時後的基因表現。由結果得知 SUMO 基因在綠果接種 Coll-153 菌 (抗病反應) 12 和 72 小時後這兩個時間點其基因表現量才會相對高於感病反應 (AVRDC PBC932 果實接種 Coll-524 菌) ,反之,紅果在接種 Coll-153 菌 (抗病反應) 12 小時後其基因表現量即會明顯隨著接種時間增加而逐漸高於對照組 (AVRDC PBC932 果實接種水) 及感病反應,而 thioredoxin 基因表現的時間點和程度略有不同,綠果在接種 Coll-153 菌 12-24 小時後其基因表現量即會相對高於對照組及感病反應,反之,紅果在接種 Coll-153 菌 48-72 小時後其基因表現量才會相對於對照組有顯著的增加,故紅果與綠果對於炭疽菌的抗性可能是採取不同的機制。本研究結果顯示 SUMO 和 thioredoxin 基因可能與 AVRDC PBC932 辣椒果實防禦炭疽菌有關,然而 SUMO 和 thioredoxin 基因在辣椒抗炭疽菌感染的明確機制則仍待後續研究。
Pepper anthracnose is one of the major constraints on chili production during summer season. Both green and red pepper fruits can be attacked by anthracnose fungi and the damage may continue even after marketing stage. Colletotrichum acutatum is the predominant species that causes anthracnose in Taiwan. A pepper accession, AVRDC PBC932, identified by AVRDC–The World Vegetable Center, is found to be susceptible to a high-virulent isolate of Co. acutatum (Coll-524) but resistant to a low-virulent Co. acutatum isolate (Coll-153). The pepper-anthracnose fungus system as a model system was used to study the host-pathogen interaction. One microliter (ca. 500 conidia) of high-virulent and low-virulent spore suspension of Co. acutatum was used for microinjection into both green and red pepper fruits separately. The fruits were inoculated and kept in the dark at 25℃ under 80 - 100% relative humidity for 0, 12, 24, 48 and 72 hours. The inoculated sites were excised to 1 cm2 for RNA extraction. Differential display-reverse transcription-polymerase chain reaction (DD-RT-PCR) technique was used to isolate defense-related genes at 0, 12, 24, 48, and 72 h after inoculation (HAI) separately. Differentially expressed cDNA bands were obtained and further cloned. Reverse northern blot analysis showed that the expression of nine out of the fourteen cloned cDNA fragments from green fruits and four out of the fourteen cloned cDNA fragments from red fruits was induced by low-virulent Coll-153 isolate, and five out of the fourteen cloned cDNA fragments from green fruits and three out of the fourteen cloned cDNA fragments from red fruits was induced by high-virulent Coll-524 isolate. The BLAST analysis indicated that proteins encoded by these clones are highly homologous to SUMO mRNA, interleukin 8, thioredoxin, putative pectin methylesterase, capsanthin/capsorubin synthase, dehydrin, and other expressed unknown proteins. SUMO and thioredoxin genes may be involved in the resistance of AVRDC PBC932 pepper fruits to Co. acutatum. Real-time RT-PCR analysis was performed with green and red fruits at 0, 12, 24, 48, and 72 HAI. In the resistant reaction (AVRDC PBC932 pepper fruits inoculated by Coll-153) of green fruit, the expression level of the SUMO gene is higher in contrast to susceptible reaction (AVRDC PBC932 pepper fruits inoculated by Coll-524) at 12 and 72 HAI. However, in the resistant reaction of red fruit, the expression level of the SUMO gene elevated gradually and reached the highest level at 72 HAI. In addition, in the resistant reaction of green fruit, the expression level of the thioredoxin gene is higher in contrast to control and susceptible reaction from 12 to 24 HAI. However, in the resistant reaction of red fruit, the expression level of the thioredoxin gene is higher in contrast to control and susceptible reaction from 48 to 72 HAI. These results suggest that SUMO and thioredoxin genes may plays roles in the defense reaction of AVRDC PBC932 to Co. acutatum. AVRDC PBC932 green and red fruits may use different defense mechanisms to protect from Co. acutatum infection. It remains to be elucidated how the SUMO and thioredoxin genes provide effective defense against Co. acutatum infection in AVRDC PBC932.
URI: http://hdl.handle.net/11455/31447
其他識別: U0005-2308201013320600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308201013320600
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.