Please use this identifier to cite or link to this item:
標題: 高爐主流道鐵渣分離效率之數值解析
Simulation Analysis on Separation Efficiency of Iron and Slag in Main Trough of the Blast Furnace
作者: 王勵
Wang, Li
關鍵字: 數值分析
Numerical analysis
Main trough of blast furnace
Multiple-phase fluid
separation of iron and slag
出版社: 化學工程學系所
引用: 1.Fluent 6.2 User’s Guide, Fluent Incorporation (2003). 2.Gambit Modeling Guide, Fluent Incorporation (2003). 3. 4.Nguyen, A.V. and Enans, G.M.,“Computational Fluid Dynamics Modeling of Gas Jets Impinging onto Liquid Pools,”Applied Mathematical Modeling, Vol. 30, pp. 1472-1484 (2006). 5.Zhu, M.Y., Sawada, I., and Iguchi, M.,“Physical Characteristics of a Horizontally Injection Gas Jet and Turbulent Flow in Metallurgical Vessels,”ISIJ International, Vol. 38, pp. 411-420 (1998). 6.Volovik, G.A., Dyshlevich, I.I., Kotov, V.I., Marder, B.F., Kalashnyuk, P.G., Taranovskii, V.V., and Fomenko, L.V.,“Reducing Pig Iron Losses at Tapping Through Design and Processing Improvements,”Translated from Metallurg, No. 3, pp. 9-10 (1981). 7.Shestopalov, I.I., Popov, N.N., Minikes, E.E., Anokhin, A.M., Shapovalov, E.V., Onishchenko, A.I., Vakulin,V.N., Kamendov, V.V., and Vertsman, G.M.,“Reducing the Amount of Pig Iron Lost with Slag,”Translated from Metallurg, No. 12, pp. 10-12 (1983). 8.Shestopalov, I.I. ,Mosiashvili, V.V., Parastashvili, V.V., Gobedzhishvili, D.N., Varava, V.I., Bitsadze, G.A., Gvaramiya, R.M., Vertsman, G.M., Kopadze, G.I., and Shatirishvili, M.G.,“Reduction in the Loss of Pig Iron with Blast Furnace Slags,”Translated from Metallurg, No. 12, pp. 25-26 (1986). 9.Shestopalov, I.I., Denisov, A.V., Mel’nikov, P.N., Makarov, V.S., Unigovskii, L.B., Shul’man, V.G., Prokhorov, V.N., Vertsman, G.M., and Tsera, I.A.,“ Improving the Separation of Smelting Products in the Main Trough of a Blast Furnace,”Translated from Metallurg, No. 6, pp. 32-33 (1988). 10.Kim, H., Ozturk, B., and Fruehan, R.J.,“Slag-metal Separation in the Blast Furnace Trough,”ISIJ International, Vol.38, No.5, pp. 430-439 (1998). 11.Shao, L.S. and Saxen, H.,“A Simulation Study of Blast Furnace Hearth Drainage Using a Two-phase Flow Model of the Taphole,”ISIJ International, Vol.51, pp. 228-235 (2011). 12.He, Q., Zulli, P., Tanzil, F., Lee, B., Dunning, J., and Enans, G.,“Flow :Characteristics of a Blast Furnace Taphole Stream and Its Effects on Trough Refractory Wear,”ISIJ International., Vol. 42, No. 3, pp. 235-242 (2002). 13.Stevenson, P. and He, Q.,“Slug Flow in a Blast Furnace Taphole,”Chemical Engineering and Processing, Vol. 44, pp. 1094-1097 (2005). 14.He, Q., Enans, G., Zulli, P., Tanzil, F., and Lee, B.,“Flow Characteristics in a Blast Furnace Trough,”ISIJ International, Vol. 42, pp. 844-851 (2002). 15.Luomala, M.J., Paananen T.T., Koykka, M.J., Fabritius, T.M.J., Nevala, H., and Harkki, J.J.,“Modelling of Fluid Flows in the Blast Furnace Trough,”Steel Research international, Vol.72, No.4 (2001). 16.Dash, S.K. and Ajmani, S.K.,“A Fluid Dynamic Analtsis of the Blast Furnace Trough at Tata Steel,”Proceeding:Camme@nml Jamshedpur, pp. 26-36 (1996). 17.Lobachev, V.T., Shestopalov, I.I., Minaev, V.M., Vertsman, G.M., and Anishchenko, Y.V.,“Improving the Efficiency of Slag and Pig Iron Separation in the Main Trough of a Blast Furnace,”Translated from Metallurg, No. 7, pp. 20-21 (1984). 18.Cameron, I.A. and Tudhope, T.M.,“Improved Trough Design Using Water Modeling,”47th Ironmaking Conference proceedings., 17-20, pp. 505-515 (1988). 19.Dudko, G.F., Machikin, V.I., Levin, M.Z., Cherzer, A.N., and Bulash, M.I., Steel in the USSR 15, No. 10, pp. 465-466 (1985). 20.Magyari, E. and Chamkha, A. J.,“Exact Analytical Solutions for Thermosolutal Marangoni Convection in the Presence of Heat and Mass Generation or Consumption,”Heat and Mass Transfer, Vol. 43, pp. 965-975 (2007). 21.Tadmor, R.,“Marangoni Flow Revisited,”Journal of Colloid and Interface Science, Vol. 332, pp. 451-454 (2009). 22.Lauga, E. and Davis, A.M.J.,“Viscous Marangoni Propulsion,”Journal of Fluid Mechanics, Vol.705, pp. 120-133 (2012). 23.Still, T., Yunker, P.J., and Yodh, A.G.,“Surfactant-induced Marangoni Eddies Alter the Coffee-Rings of Evaporating Colloidal Drops,”Langmuir, Vol. 28. pp. 4984-4988 (2012). 24.Tanaka, T., Kitamura, T., and Back, I.A.,“Evaluation of Surface Tension of Molten Ionic Mixtures,”ISIJ International, Vol. 46, No. 3, pp. 400-406 (2006). 25.Pan, Z.H., Wang, H., and Yang, Z.,“Marangoni Bifurcation Flow in a Microchannel T-Junction and Its Micropumping Effect: A Computational Study,”Chinese Physics Letters, Vol. 29, pp. 074702-1-074704 (2012). 26.Cai, Y. and Newby, B., “Marangoni Flow Induced Self-assembly of Hexagonal and Stripelike Nanoparticle Patterns,”Journal of the American Chemical Society, Vol. 130, pp. 6076-6077 (2008). 27.Hibiya, T. and Ozawa, S.,“ Marangoni Flow and Surface Tension of High Temperature Melts,”High Temperature Measurements of Materials, Vol. 11, pp. 30-59 (2009). 28.Arifin, N.M., Ali, F.M., Nazar, R., and Pop, I.,“Thermal and Solutal Marangoni Mixed Convection Boundary Layer Flow,”WSEAS TRANSACTIONS on MATHEMATICS, Vol. 9, pp. 376-385 (2010). 29.Kim, H.S., Lee, S.H., and Sasaki, Y.,“Enhancement of Iron Melting Rate under the Co-existence of Graphite and Wustite,”ISIJ International., Vol. 50, No. 1, pp. 71-80 (2010). 30.Lu, S., Fujii, H., and Nogi, K.,“Marangoni Convection and Gas Tungsten Arc Weld Shape Variations on Pure Iron Plates,”ISIJ International., Vol. 46, No. 2, pp. 276-280 (2006). 31.Paullet, J.E.,“An Uncountable Number of Solutions for a BVP Governing Marangoni Convection,”Mathematical and Computer Modelling, Vol. 52, pp. 1708-1715 (2010). 32.Jin, H., Marmur, A., Ikkala, O., and Ras, R.H.A.,“Vapour-driven Marangoni Propulsion: Continuous, Prolonged and Tunable Motion,”Chemical Science, Vol. 3, pp. 2526-2529 (2012). 33.Thiele, U., Vega, J.M., and Knobloch, E.,“Long-wave Marangoni Instability with Vibration,”Journal of Fluid Mechanics, Vol. 546, pp. 61-87 (2006). 34.Ahmad, N., Kechil, S.A., and Basir, N.M.“Thermosolutal MHD Mixed Marangoni Convective Boundary Layers in the Presence of Suction or Injection,” World Academy of Science, Engineering and Technology, Vol. 58, pp. 459-464 (2011). 35.Magyari, E. and Chamkha, A. J.,“Exact Analytical Results for the Thermosolutal MHD Marangoni Boundary Layer,”International Journal of Thermal Sciences, Vol. 47, pp. 848-857 (2008). 36.Touvet, T., Balmforthn, J., Craster, R.V. and Sutherland, B.R.,“Fingering Instability in Buoyancy-driven Fluid-filled Cracks,”Journal of Fluid Mechanics, Vol. 672, pp. 60-77 (2011). 37.Beg, O. A., Bhargava, R., Rawat, S., Takhar, H.S., and Beg, T.A.,“A Study of Steady Buoyancy-Driven Dissipative Micropolar Free Convection Heat and Mass Transfer in a Darcian Porous Regime with Chemical Reaction,”Nonlinear Analysis: Modelling and Control, Vol. 12, 157-180 (2007). 38.Ben-Cheikh, N., Chamkha, A.J., Ben-Beya, B., and Lili, T.,“ Natural Convection of Water-Based Nanofluids in a Square Enclosure with Non-Uniform Heating of the Bottom Wall,”Journal of Modern Physics, Vol. 4, pp. 147-159 (2013). 39.Livescu, D. and Ristorcelli, J.R.,“ Variable-density Mixing in Buoyancy-driven Turbulence,”Journal of Fluid Mechanics, Vol.605, pp. 145-180 (2008). 40.Rayward-Smith, W.J. and Woods, A.W.,“Dispersal of Buoyancy-Driven Flow in Porous Media with Inclined Baffles,”Journal of Fluid Mechanics, Vol.689, pp. 517-528 (2011). 41.Hallez, Y. and Magnaudet, J.,“Effects of Channel Geometry on Buoyancy-driven Mixing,”PHYSICS OF FLUIDS, Vol. 20, pp. 053306-1- 053306-9 (2008). 42.Puragliesi, R., Dehbi, A., Lerichec, E., Soldati, A., and Deville, M.O.,“ DNS of Buoyancy-driven Flows and Lagrangian Particle Tracking in a Square Cavity at High Rayleigh Numbers,”International Journal of Heat and Fluid Flow, pp. 1-16 (2011). 43.Isa, K. and Arshad, M.R., “Buoyancy-driven underwater Glider Modelling and Analysis of Motion Control,” Indian journal of Marine, Vol. 41, pp. 516-526 (2012). 44.Fabre , D., Tchoufag, J., and Magnaudet, J.,“The Steady Oblique Path of Buoyancy-driven Disks and Spheres,” Journal of Fluid Mechanics, Vol. 707, pp. 24-36 (2012). 45.Rongy, L., Schuszter, G., Sinko, Z., Toth, T., Horvath D., Toth, A., and Wit, A.D.,“ Influence of Thermal Effects on Buoyancy-driven Convection,”c 2009 American Institute of Physics, CHAOS 19, pp. 023110-1-023110-7 (2009). 46.Wang, S., Shen, Z., and Gu, L.,“Numerical Simulation of Buoyancy-driven Turbulent Ventilation in Attic Space under Winter Conditions,” Published in Energy and Buildings, Vol. 47, pp. 360-368 (2012). 47.Elmana, H., Mihajlovic, M., and Silvester, D.,“ Fast iterative solvers for buoyancy driven flow problems,”Journal of Computational Physics, Vol. 230, pp. 3900-3914 (2011). 48.Trashorras, A.J.G., Alvarez, E.A., Gonzalez, J.L.R., Cuesta, J.M.S., and Bernat, J.X.,“Design and Evaluation of a Heat Recuperator for Steel Slags,” Applied Thermal Engineering, Vol. 56, pp. 11-17 (2013). 49.Launder, B.E. and Spalding, D.B., Lectures in Mathematical Model of Turbulence, Academic Press, London (1972). 50.陶文銓,數值熱傳學(第二版),西安交通大學出版社,西安(2001)。 51.郭鴻志,傳輸過程數值模擬,冶金工業出版社,北京(1998)。 52.Versteeg, H.K. and Malalasekera, W., An Introduction to Computational Fluid Dynamic:The Finite Volume Method, Wiley, New York (1995). 53.吳光中、宋婷婷、張毅,FLUENT 基礎入門與案例精通,電子工業出版社,北京(2012)。 54.王福軍,計算流體動力學分析,清華大學出版社,北京(2011)。 55.
摘要: 鋼鐵工業是以生產各種鋼鐵產品為主的行業,為國家建設的基本工業,被稱為工業之母。全世界任何一個國家,鋼鐵工業常被視為國力強弱的象徵。為了可以使國內的鋼鐵業產能能夠得到提升,本文將於鋼鐵業中的製鐵製程進行深入探討。本研究利用計算流體力學模擬三相流體經由噴流的方式注入高爐主流道的流動行為及鐵渣分離性。其中,物理模型是根據中鋼四號高爐主流道;且分別利用 方程式和體積分率法描述於主流道衝擊區紊流流動及空氣、鐵水與爐渣三相流體;而壓力場和速度分佈則藉由有限體積法和隱含式壓力流速藕合運算法求得,並運用牛頓黏度定律來獲得壁面剪切應力分佈,並與中鋼四號高爐主流道受侵蝕之鐵水線作比對,以驗證本實驗之數值架構的合理性。最後再以主流道進出口之質量流率來計算其鐵渣分離性。從結果顯示,雖然由熱浮力現象所造成的漩渦流動對主流道耐火材會造成若干程度的侵蝕,但其遠小於衝擊區因紊流所造成的侵蝕,故如何降低衝擊區主流道耐火材受侵蝕的程度,才是延長主流道壽命主因。本文發現,當主流道內的流體流速越快,則分離效果不彰;當渣道口與鐵水出口之高度差大於0.2公尺時,則可獲得較佳之鐵渣分離性;擋板高度越低,則擋板前之主流道系統液位會較易升高,導致鐵水較易流往渣道而造成浪費;此外,對於不同寬度主流道之比較可發現,寬度最窄的主流道會於渣道附近產生紊流,此強制對流則會把若干鐵水捲進渣道;而不同出鐵口仰角會影響主流道衝擊區的位置,對鐵渣之分離性也會造成若干影響。
Iron and steel industry turn on making every steely product and it is the basic of country reconstruction. It is called the mother of industry. For any countries, it would be considered to view as strong or weak of nation power. In order to increase production capacity on iron and steel industry in our country, the article will concentrate deeply on making iron processing. This paper aims to simulate three phases fluid flow and separation of iron and slag in main trough of the blast furnace during tapping process by means of computational fluid dynamics (CFD) technology. The physical model is based on main trough of the blast furnace no. 4 at China Steel Co. (CSC BF4). The k-εequations and volume of fluid (VOF) were used for describing turbulent flow at the impinging zone of trough and indicating liquid iron and air in the governing equation respectively. The pressure field and velocity profile were then obtained through finite volume method (FVM) and pressure implicit with splitting of operators (PISO), followed by calculating the wall shear stress through the Newton’s law of viscosity to analyze the wall shear stress profile of simulation, and comparing with the wear profile of CSC BF4 main trough to test the numerical solution. Finally, we use the mass flow rate to calculate the separation efficiency in this study. As shown in the numerical results, the thermal buoyancy results in the erosion of the main trough but its effect is lower than turbulent flow in the impinging zone. It was found that the fluid velocity in the main trough is faster, then the separation efficiency is worse; and if the height difference between iron dam and slag port is higher than about 0.2m, the separation efficiency will be an optimum. In addition, the results indicate that the height of skimmer is higher, the separation is better; if the width of the main trough is narrow, the flow field nearby slag port will produce turbulence. It can carry some iron into slag port; the angle of taphole can affect the position of impinging zone, so it can also influence result of separation efficiency.
其他識別: U0005-2308201312142300
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.