Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31461
標題: 四季桔與長實金柑對柑橘潰瘍病之抗病特性分析
Characterization of the resistance of calamondin and kumquat to Xanthomonas axonopodis pv. citri
作者: 陳柏昇
Chen, Po-Sheng
關鍵字: citrus canker
柑橘潰瘍病
calamondin
oval kumquat
resistance
四季桔
長實金柑
抗病性
出版社: 植物病理學系所
引用: 呂明雄、徐信次, 2002. 品種及其特性. 柑橘整合管理, 11-35. Aebi, H., 1984. Catalase in vitro. Methods Enzymol. 105, 121-126. Afek, U., Sztejnberg, A., 1988. Accumulation of scoparone, a phytoalexin associated with resistance of Citrus to Phytophthora citrophthora. Phytopathology 78, 1678-1682. Ballester, A.R., Lafuente, M.T., Gonzalez-Candelas, L., 2006. Spatial study of antioxidant enzymes, peroxidase and phenylalanine ammonia-lyase in the citrus fruit-Penicillium digitatum interaction. Postharvest Biol. Technol. 39, 115-124. Beauchamp, C., Fridovich, I., 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276-287. Carlberg, I., Mannervik, B., 1985. Glutathione reductase. Methods Enzymol. 113, 484-490. Decker, L.A., 1977. In Worthington Enzyme Manual. Worthingtion Biochemical Corporation, New Jersey. 346 pp. Del Rio, J., Arcas, M., Benavente-Garcia, O., Ortuno, A., 1998. Citrus polymethoxylated flavones can confer resistance against Phytophthora citrophthora, Penicillium digitatum, and Geotrichum species. J. Agric. Food Chem 46, 4423-4428. Droby, S., Eick, A., Macarisin, D., Cohen, L., Rafael, G., Stange, R., McColum, G., Dudai, N., Nasser, A., Wisniewski, M., 2008. Role of citrus volatiles in host recognition, germination and growth of Penicillium digitatum and Penicillium italicum. Postharvest Biol Tec 49, 386-396. Duan, Y.P., Castaneda, A., Zhao, G., Erdos, G., Gabriel, D.W., 1999. Expression of a single, host-specific, bacterial pathogenicity gene in plant cells elicits division, enlargement, and cell death. Mol. Plant-Microbe Interact. 12, 556-560. Goto, M., 1969. Studies on citrus canker in Japan. pp. 1251-1252. Goto, M., 1992. Citrus canker. Plant diseases of international importance 3, 170-208. Goto, M., Yaguchi, Y., 1979. Relationship between defoliation and disease severity in citrus canker. Ann. Phytopathol. Soc. Japan 45, 689-694. Gottig, N., Garavaglia, B., Garofalo, C., Orellano, E., Ottado, J., 2009. A filamentous hemagglutinin-like protein of Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker, is involved in bacterial virulence. PLoS ONE 4. Gottwald, T., Graham, J., Civerolo, E., Barrett, H., Hearn, C., USDA, A., 1993. Differential host range reaction of citrus and citrus relatives to citrus canker and citrus bacterial spot determinated by leaf mesophyll susceptiblity. Plant Dis. 77, 1004-1007. Gottwald, T., Graham, J., CREC, I., EGEL, D., 1992. Analysis of foci of Asiatic citrus canker in a Florida citrus orchard. Plant Dis. 76, 389-396. Gottwald, T., Graham, J., Schubert, T., USDA, A., 2002. Citrus Canker: The Pathogen and Its Impact. Online. Plant Health Progress. Gottwald, T., Timmer, L., McGuire, R., 1989. Analysis of disease progress of Citrus canker in nurseries in Argentina. Phytopathology 79, 1276-1283. Graham, J., 2001. Varietal susceptibility to citrus canker: Observations from southern Brazil. Citrus Ind 82, 15-17. Graham, J., Gottwald, T., Cubero, J., Achor, D., 2004. Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. Mol. Plant Pathol. 5, 1-15. Johann, S., Oliveira, V., Pizzolatti, M., Schripsema, J., Braz-Filho, R., Branco, A., Smania Jr, A., 2007. Antimicrobial activity of wax and hexane extracts from Citrus spp. peels. Mem. Inst. Oswaldo Cruz 102, 681-685. Khalaf, A., Moore, G., Jones, J., Gmitter Jr, F., 2007. New insights into the resistance of Nagami kumquat to canker disease. Physiol. Mol. Plant Pathol. 71, 240-250. Koizumi, M., Grierson, W., 1977. Relation of temperature to the development of citrus canker lesions in the spring. pp. 924-928. Koizumi, M., Kuhara, S., 1982. Evaluation of citrus plants for resistance to bacterial canker disease in relation to lesion extension. Bull. Tree Fruit Res. D 4, 73-92. Lin, H., Hsu, S., Hwang, A., Tzeng, K., 2005. Phenotypic and Genetic Characterization of Novel Strains of Xanthomonas axonopodis pv. citri Which Induce Atypical Symptoms on Citrus Leaves in Taiwan. Plant Pathol. Bull. 14, 227-238. Lin, H., Hsu, S., Tzeng, K., 2009. Histopathology and Bacterial Populations of Atypical Symptoms-Inducing Xanthomonas axonopodis pv. citri Strains in Leaves of Grapefruit and Mexican Lime. Plant Pathol. Bull. 18, 125-134. Okabe, N., 1932. Bacterial disease of plant occurring in Formosa. I. J. Soc. Trop. Agric 4, 470-483. Padmavati, M., Sakthivel, N., Thara, K., Reddy, A., 1997. Differential sensitivity of rice pathogens to growth inhibition by flavonoids. Phytochemistry 46, 499-502. Pruvost, O., Boher, B., Brocherieux, C., Nicole, M., Chiroleu, F., 2002. Survival of Xanthomonas axonopodis pv. citri in leaf lesions under tropical environmental conditions and simulated splash dispersal of inoculum. Phytopathology 92, 336-346. Rigano, L., Siciliano, F., Enrique, R., Sendin, L., Filippone, P., Torres, P., Questa, J., Dow, J., Castagnaro, A., Vojnov, A., 2007. Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Mol. Plant-Microbe Interact. 20, 1222-1230. Schoulties, C., Civerolo, E., Miller, J., Stall, R., Krass, C., Poe, S., DuCharme, E., 1987. Citrus canker in Florida. Plant Dis. 71, 388-395. Schubert, T., Rizvi, S., Sun, X., Gottwald, T., Graham, J., Dixon, W., 2001. Meeting the challenge of eradicating citrus canker in Florida-Again. Plant Dis. 85, 340-356. Stall, R., Miller, J., Marco, G., Echenique, B., 1980. Population dynamics of Xanthomonas citri causing cancrosis of citrus in Argentina. Ann. Rev. Phytopathol. 29, 399-420 Stange, R., Midland, S., Sims, J., Greg McCollum, T., 2002. Differential effects of citrus peel extracts on growth of Penicillium digitatum, P. italicum, andP. expansum. Physiol. Mol. Plant Pathol. 61, 303-311. Timmer, L., Gottwald, T., Zitko, S., 1991. Bacterial exudation from lesions of Asiatic citrus canker and citrus bacterial spot. Plant Dis. 75, 192-195. Tsai, B., 2008. Effect of peels of lemon, orange, and grapefruit against Meloidogyne incognita. Plant Pathol. Bull. 17, 195-201. Verniere, C., Hartung, J., Pruvost, O., Civerolo, E., Alvarez, A., Maestri, P., Luisetti, J., 1998. Characterization of phenotypically distinct strains of Xanthomonas axonopodis pv. citri from Southwest Asia. Eur. J. Plant Pathol. 104, 477-487. Wang, Y., Chuang, Y., Hsu, H., 2008. The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food Chem. 106, 277-284. Wang, Y., Chuang, Y., Ku, Y., 2007. Quantitation of bioactive compounds in citrus fruits cultivated in Taiwan. Food Chem. 102, 1163-1171. Wendel, A., 1980. In" Enzymatic Basis of Detoxification"(W. Jakoby, ed.). Vol. 1. Academic Press, New York. Wojtaszek, P., 1997. Oxidative burst: an early plant response to pathogen infection. Biochem. J. 322, 681-692. Wu, W., Tzeng, K., Lee, M., Kuo, H., 1989. Occurrence and distribution of citrus canker in Taiwan. Plant Pathol. Bull. 31, 139-150. Yao, J., Allen, C., 2006. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J. Bacteriol. 188, 3697-3708.
摘要: 柑橘潰瘍病由Xanthomonas axonopodis pv. citri所引起,為柑橘果樹重要的細菌性病害之一,並被美國及南美國家等柑橘產區列為檢疫性病害,此病害可危害的葉片、枝條及果實,造成凸起木栓化之病徵。根據Gottwald氏整合田間觀察與實驗的結果,四季桔與金柑屬植物對於柑橘潰瘍病具有較高的抗性,但目前對其產生抗性的因子研究有限,本研究就以四季桔及長實金柑兩品種作為研究對象,並以高感病性的墨西哥萊姆作為對照品種,探討其對柑橘潰瘍病的抗性因子。本研究先以兩種接種方式去確認四季桔及長實金柑的抗性,首先在穿刺接種方面,可觀察到兩者產生的病斑數低於感病的墨西哥萊姆,且病徵為扁平狀暗褐色,而非典型的木栓化凸起病斑,而在注射接種方面,接種濃度不同有不同的反應,於低濃度105 CFU/ml菌液接種下,四季桔與長實金柑接種後七天內不會有病徵產生,菌量在接種後四到七天時持平或是下降,於濃度107 CFU/ml菌液接種下,四季桔和墨西哥萊姆的病徵與菌量相似,長實金柑則不會有明顯的病徵產生或是只有輕微水浸狀,菌量也較低,而在高菌量108 CFU/ml接種下,四季桔、長實金柑和墨西哥萊姆菌量無明顯差別,但四季桔及長實金柑於接種六天後產生壞疽病徵,並且開始落葉。分析潰瘍病菌於抗、感品種間產生的趨化性以及biofilm,結果顯示墨西哥萊姆葉片傷口具有較高吸引潰瘍病菌聚集的能力,其次為四季桔,長實金柑無趨化性的現象,而biofilm的形成於抗、感病品種的葉片上並無明顯差異;分析植物萃取液及黃酮類化合物是否抑制潰瘍病菌的生長,四季桔和長實金柑的果實萃取液及黃酮類的hesperidin和quercetin有的抑菌效果;分析誘發的防禦反應中H2O2的累積,長實金柑接種後可產生大量之H2O2;於抗氧化酵素活性方面,分析superoxide dismutase (SOD) 、catalase (CAT)、glutathione peroxidase (GPX) 及glutathione reductase (GR) 四種抗氧化酵素活性變化,也顯示長實金柑具有累積H2O2的跡象,且處於oxidative burst。由本研究之結果可知長實金柑和四季桔對柑橘潰瘍病具有抗性,長實金柑的抗性可由固有和誘發的防禦反應構成,而四季桔抗性因子主要為固有的防禦反應。
Citrus canker caused by Xanthomonas axonopodis pv. citri (Xac) is one of the most severe bacterial disease on citrus. Xac caused erumpent and corky lesion on leaves, stems and fruits. It has long been known that some citrus relatives including calamondin (Citrus madurensis) and kumquat (Fortunella spp.) are highly resistant to Xac compared to commercial cultivars of citrus. My research is focused on the interactions of Xac and resistant varieties, calamondin and oval kumquat (Fortunella margarita). Pathogenicity assays using needle prick inoculation on leaf revealed that Xac induced flatter necrotic lesions and less lesion numbers on calamondin and oval kumquat, but promoted characteristic canker lesions with raised and corky appearance on the susceptible variety, Mexican lime (Citrus aurantifolia). When inoculated by infiltration with 105 CFU/ml of bacterial cells in leaf, Xac propagated at lower rate in both oval kumquat and calamondin compared to Mexican lime and raised and corky symptom was only shown on Mexican lime 7 days post-infiltration (7 DPI). When inoculated with 107 CFU/ml of bacterial cells, Xac propagated at lower rate in oval kumquat compared to Mexican lime or calamondin. Water-soaked or symptomless was observed on infiltrated oval kumquat leaves but raised and corky symptom was shown on Mexican lime and calamondin at 7 DPI. When inoculated with 108 CFU/ml of bacterial cells, the central part of infiltrated area was necrotic on calamondin and oval kumquat leaves and severe raised and corky symptom was shown on Mexican lime at 7 DPI. Xac propagated well and reached to the similar population levels in the three plants in unnecrotic infiltrated areas. Wounded Mexican lime leaf, but not wounded oval kumquat and calamondin leaf, could attract Xac. Biofilm formation analysis showed no difference on Xac biofilm formation on intact leaves of the three plants. Further analysis revealed that the peel, but not leaf, extracts from calamondin or kumquat displayed inhibitory effects to Xac as assayed in culture, implicating the presence of preformed compounds. H2O2 accumulation was observed by 3,3'-diaminobenzidine (DAB) detection in leaves of Xac-infiltrated oval kumquat at early infection stage. Antioxidant enzyme activites were detected in Xac-infected and un-treated leaves including superoxide dismutase (SOD), catalase, glutathione reductase (GR) and glutathione peroxidase (GPx) . The levels of antioxidant enzymes were changeless or slightly increased in Mexican lime and calamondin after Xac infection. In oval kumquat catalase and GR activities decreased after Xac infection. Thus, our results suggest that both preformed and induced defense compounds of kumquat may have an important role in cellular resistance to Xac, while preformed compounds may contribute more than antioxidant enzymes for calamondin on resistence to Xac infection.
URI: http://hdl.handle.net/11455/31461
其他識別: U0005-2308201017205800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308201017205800
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.