Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31464
標題: 甜瓜萎凋病的病原菌鑑定與其基本生物特性及生物防治菌篩選
Identification for the causal agent of melon Fusarium wilt and its essential biological characteristics and screening test of biocontrol agents
作者: 黃美茹
Huang, Mei-Ju
關鍵字: melon
甜瓜
Fusarium oxysporum f. sp. melonis
pathogenicity
biocontrol
Bacillus mycoides
甜瓜萎凋病菌
病原性
生物防治
Bacillus mycoides
出版社: 植物病理學系所
引用: 1. 丁姵分。2006。番茄萎凋病之生物防治菌的鑑定與防治潛力評估。國立中興大學植物病理系碩士論文。51 pp.。 2. 台灣植物病害名彙第四版編輯委員會。2002。台灣植物病害名彙。第四版。中華民國植物病理學會出版。台中。386 pp。 3. 行政院農業委員會。2008。民國 97 年農業統計年報。行政院農業委員會出版。台北。365 pp。 4. 周立瓴、孫守恭 。1980。香瓜蔓割病之生態研究。植保會刊22(4) :437-438。 5. 郁宗雄。2001。蔬菜栽培。186 pp.。 6. 陳任芳。1999。胡瓜萎凋病之鑑定及篩選無病原性尖鐮孢菌之防治研究。國立中興大學植物病理系碩士論文。80 pp.。 7. 黃振文。1976。西瓜蔓割病的生物學及其防治試驗。國立中興大學植物病理系碩士論文。111 pp.。 8. 黃振文。1991。利用土壤添加物防治作物之土壤傳播性病害。植保會刊7:150-153。 9. 黃賢良。1995。甜瓜。p.377-382。台灣農家要覽:農作篇(二)。台灣農家要覽增修訂再版策畫委員會。財團法人豐年社。台北市。698 pp。 10. 黃振文、孫守恭。1997。台灣產鐮孢菌。世維出版社。台中。116 pp.。 11. 黃靜淑。2008。Bacillus mycoides的抑菌能力與防治甘藍幼苗病害之效果。國立中興大學植物病理系碩士論文。57 pp.。 12. 黃圓滿、黃賢良。2009。作物簡介。p.2-6。植物保護圖鑑系列19 ─ 甜瓜保護。林正忠等編撰。行政院農業委員會動植物防疫檢疫局。台北市。160 pp. 13. 鄭安秀、黃德昌。1998。Acidovorax avenae sunsp. citrulli 引起的甜瓜及苦瓜細菌性果斑病。植物病理學會刊 7: 216。 14. 蔡竹固、童伯開。 1995。瓜類白粉病。瓜類作物保護技術研討會專刊。p. 135- 146。中華植物保護學會編印。 15. 蔡竹固、陳瑞祥、童伯開。 1999。 台灣甜瓜蔓割病菌之生理小種。 植保會刊41:139-143。 16. Abou-Jawdah, Y., and Al-Khoury, A. M. 1996. First report of the identification of race 0, 1, and 1,2 of Fusarium oxysporum f. sp. melonis in Lebanon. Plant Dis. 80:712. 17. Alabouvette, C. 1990. Biological control of Fusarium wilt pathogens in suppressive soils. Pages 27-43 in: “Biological Control of Soil-born Plant Pathogens”. D. Hornby. ed. CAB International, UK. 479pp. 18. Alabouvette, C., Lemanceau, P., and Steinberg, C. 1993. Recent advances in the biological control of Fusarium wilts. Pestic. Sci. 37: 365-373. 19. Banihashemi, Z., and deZeeuw, D. J. 1973. Saprophytic activities of Fusarium oxysporum f. sp. melonis in soil. Trans. Br. Mycol. Soc. 60(2):205-210. 20. Banihashemi, Z., and deZeeuw, D. J. 1975. The behavior of Fusarium oxysporum f. sp. melonis in the presence and absence of host plants. Phytopathology 65 : 1212-1217 21. Bargabus, R. L., Zidack, N. K., Sherwood, J. W., and Tavobsen, B. J. 2002. Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol. Mol. Plant Pathol. 61 : 289-298. 22. Bargabus, R. L., Zidack, N. K., Sherwood, J. W., and Tavobsen, B. J. 2004. Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biol. Control 30 (2) : 342-350. 23. Belisario, A., Luongo, L., and Corazza, L. 1999. La tracheofusariosi, una preoccupante avversità del melone d’inverno. Tec. Agric. 23 : 41-44. 24. Belisario, A., Luongo, L., Corazza, L., and Gordon, T. R. 2000. Indagini su popolazioni di Fusarium oxysporum f. sp. melonis in Italia. Colture Protette 3 : 87-89. 25. Benoit, F.1974. The Fusarium problem in melon growing in Belgium and the relative value of certain rootstocks. Tuinbouwberichten (Belg.) 38 : 16-20. 26. Booth, C. 1971. The Genus Fusarium. Commonwealth Mycological Institute, Kew, Surrey, England. 237 pp. 27. Bottini, R., Cassán, F., and Piccoli, P. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl. Microbiol. Biotechnol. 65 : 497-503. 28. Corazza, L. 1998. Le fusariosi del melone d’inverno. Colture Protette 5 : 39-41. 29. Czaban, J., Księżniak, A., and Perzyński, A. 2004. An attempt to protect winter wheat against Fusarium culmorum by the use of rhizobacteria Pseudomonas fluorescens and Bacillus mycoides. Pol. J. Microbiol. 53 : 175-182. 30. Datnoff, L. E., Nemec, S., and Pernezny, K. 1995. Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol. Control 5 (3) : 427-431. 31. Driks, A. 2004. The Bacillus spore coat. Phytopathology 94 : 1249-1251. 32. Elizabeth, A. B., and Handelsman, J. 1999. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol. Lett. 171 : 1-9. 33. Erzurum, K., Taner, Y., Secer, E., Yanmaz, R., and Maden, S. 1999. Occurrence of races of Fusarium oxysporum f. sp. melonis causing wilt on melon in Central Anatolia. J. Turkish Phytopathol. 28 : 87-97. 34. Gerlach, W., and Nirenberg, H. 1982. The genus Fusarium-A Pictorial Atlas. Mitt. Biol. Bundesanst Land-Forstwirtsch. Berl - Dahlem 209 : 1-406 35. Gomez Vazquez, J., and Tello Marquina, J. C. 2000. Presenzia de la razza 1,2 de Fusarium oxysporum f. sp. melonis en Almeria. Bol. San. Veg. Plagas 26 : 27-33. 36. Gordon, T. R., Okamoto, D. 1990. Colonization of crop residue by Fusarium oxysporum f. sp. melonis and other species of Fusarium. Phytopathology 80 : 381- 386. 37. Gordon, T. R., Okamoto, D., and Jacobson, D. J. 1989. Colonization of muskmelon and nonsusceptible crops by Fusarium oxysporum f. sp. melonis and other species of Fusarium. Phytopathology 79:1095-1100. 38. Katan, J. 1971. Symptomless carriers of the tomato Fusarium wilt pathogen. Phytopathology 61:1213-1217. 39. Kim, D. H., Martyn, R.D.., Magill , C.W. 1993. Mitochondrial DNA (mtDNA)-relatedness among formae speciales of Fusarium oxysporum in the Cucurbitaceae. Phytopathology 83: 91-97. 40. Larkin, R. P., Hopkins, D. L., and Martin, F. N. 1996. Suppression of Fusarium wilt of watermelon by nonpathogenic Fusarium oxysporum and other microorganisms recovered from a disease-suppressive soil. Phytopathology 86 : 812-819. 41. Martyn, R. D., and Gordon, T. R. 1996. Fusarium wilt of Melon, pages 14-15 in "Compendium of Cucurbit Diseases". Zitter, T. A., Hopkins, D. L., and Thomas, C. E. (eds.). American Phytopathological Society Press, Minnesota, U.S.A., 87pp. 42. Minuto, A., Migheli, Q., and Garabaldi, A. 1995. Evaluation of antagonistic strains of Fusarium spp. in the biological and integrated control of Fusarium wilt of cyclamen. Crop Prot. 14 : 221-226. 43. Minuto, A., Garibaldi, G., 2001. Segnalazione di un avvizzimento non parassitario su colture di pomodoro cv Cuore di bue innestate su piede resistente. Informatore fitopatologico 51 (3) : 51–53. 44. Murphy, J. F., Reddy, M. S., Ryu, C.-M., Kloepper, J. W., and Li, R. 2003. Rhizobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Phytopathology 93 : 1301-1307. 45. Namiki, F., Shiomi, T., Nishi, K., Kayamura, T., and Tsuge, T. 1998. Pathogenicity and genetic variation in the Japanese strains of Fusarium oxysporum f. sp. melonis. Phytopathology 88 : 804-810. 46. Nash, S. N., and Snyder, W. C. 1962. Quantitative estimation by plate counts of propagules of the bean root rot Fusarium in field soils. Phytopathology 52 : 567-572. 47. Nelson, P. E., Toussoun T. A., and Marasas, W. F. O. 1983. Fusarium species: An Illustrated Manual for Identification. Pennsylvanisa State University Press, University Park. 193 pp. 48. Nicholson W. L., Munakata, N., Horneck, G., Melosh, H. J., and Setlow, P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64: 548-572. 49. Owen, J. H. 1956. Cucumber wilt, caused by Fusarium oxysporum f. sp. cucumerinum N. F. Phytopathology 46: 153-157. 50. Paulitz, T. C., Park, C. S., and Baker, R. 1987. Biological control of Fusarium wilt of cucumber with nonpathogenic isolates of Fusarium oxysporum. Can. J. Microbiol. 33: 349-353. 51. Postma, J., and Rattink, H. 1992. Biological control of Fusarium wilt of carnation with a non-pathogenic isolate of Fusarium oxysporum. Can. J. Bot. 70 : 1199-1205. 52. Risser, G., Banihashemi, Z., and Davis, D. W. 1976. A proposed nomenclature of Fusarium oxysporum f. sp. melonis races and resistance genes in Cucumis melo. Phytopathology 66 : 1105-1106. 53. Rivas, R., Velázquez, E., Luis Zurdo-Piñeiro, J., Mateos, P. F., and Molina, E. M. 2004. Identification of microorganisms by PCR amplification and sequencing of a universal amplified ribosomal region present in both prokaryotes and eukaryotes. J. Microbiol. Meth. 56(3): 413-426. 54. Scher, F. M., and Baker, R. 1982. Effect of Pseudomonas putida and a synthetic iron chelator on induction of suppressiveness to Fusarium wilt pathogens. Phytopathology 72 : 1567-1573. 55. Schreuder, W., Lamprecht, S. C., and Holz, G. 2000. Race determination and vegetative compatibility grouping of Fusarium oxysporum f. sp. melonis from South Africa. Plant Dis. 84 : 231-234. 56. Sherf, A. F., and Macnab,A. A. 1986. Fusarium wilt of muskmelon. Pages 334-337 in: Vegetable Diseases and Their Control. 2nd ed. John Wiley and Sons, New York. 57. Snyder, W. C. and Hansen, H. N. 1940. The species concept in Fusarium. Amer. J. Bot. 27 : 64-67. 58. Suárez-Estrella, F., Vargas-García, M.C. , López, M.J., Moreno, J. 2004. Survival of Fusarium oxysporum f. sp. melonis on plant waste. Crop Protection 23 (2): 127-133. 59. Turnbull, P. C., Hutson, R. A., Ward, M. J., Jones, M. N., Quinn, C. P., Finnie, N. J., Duggleby, C. J., Kramer, J. M., and Melling, J. 1992. Bacillus anthracis but always anthrax. J. Appl. Bacteriol. 72: 21-28. 60. UNEP Methyl Bromide Technical Options Committee. 1994. Montreal protocol on substances that deplete the ozone layer: 1994 report of the MBTOC. EPA-430/K94/029. 61. Vaughn, S. F., and Spencer, G. F. 1994. Antifungal activity of nature compound against thiabendazole-resistant Fusarium sambucinum srains. J. Agric. Food Chem. 42 : 200-203. 62. Wechter, W. P., Whitehead, M. P., Thomas, C. E., and Dean, R. A. 1995. Identification of a randomly amplified polymorphic DNA marker linked to the Fom-2 Fusarium wilt resistance gene in muskmelon MR-1. Phytopathology 85 : 1245-1249. 63. Whipps, J. M., and Lumsden, R. D. 2001. Fungi as biocontrol agent: Progress, Problems and Potential. Butt, T. M., Jackson, C., and Magan, N. (eds.), CAB International Press, Oxon, UK, 9-12. 64. White,T., Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols. p. 315-322. Innis, M., Gelfand, D., Sninsky, J., and White, T. eds. Academic press. U.S.A. 65. Yildiz, M. and Delen, N. 1977. Studies on the occurrence of Fusarium wilt of cucumber Ege region of Turkey. J. Turk. Phytopathol. 6(3): 111-117. 66. Zehnder, G. W., Yao, C. Murphy, J. F. Sikora, E. R. and Kloepper, J. W. 2000. Induction of resistance in tomato agains cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria. BioControl 45 : 127-137. 67. Zhang, J., Howell, C. R., and Starr, J. L. 1996. Suppression of Fusarium colonization of cotton roots and Fusarium wilt by seed treatments with Gliocladium virens and Bacillus subtilis. Biocontrol Sci. Technol. 6 : 175-187. 68. Zitter, T. A., Gordon, T. R., Schroeder, D. T., and Okamoto, D. 1997. Fusarium wilt of field-grown muskmelon in British Columbia. Can. J. Plant. Pathol. 23(4) : 403-410. 69. Zuniga, T. L., Zitter, T. A., Gordon, T. R., Schroeder, D. T., and Okamoto, D. 1997. Characterization of pathogenic races of Fusarium oxysporum f. sp. melonis causing Fusarium wilt of melon in New York. Plant Dis. 81:592-596.
摘要: 西元 2009年6月於台中縣大里田間出現大量甜瓜 ( Cucumis melo var. conomon Mak ) 萎凋枯死,植株莖部出現割裂流膠,葉片黃化向內捲,且維管束有褐化的現象。自罹病組織分離出 FOM02 及 FOM05 菌株,其形態與 ITS ( internal transcribed spacer ) 序列比對之結果皆屬於尖鐮孢菌 ( Fusarium oxysporum )。將FOM05分別接種小白菜、甘藍、青花椰菜、蘿蔔、番茄、青椒、莧菜、萵苣、芹菜、長豇豆、甜瓜、西瓜、胡瓜、扁蒲及絲瓜等作物,結果僅甜瓜受到感染,因此將 FOM02 與 FOM05 兩菌株鑑定為 F. oxysporum f. sp. melonis (Leach & Currence) W.C. Snyder & H.N. Hans.。在 PDA 上產生白色至淡紫色之菌落及橙黃色之孢子堆,孢子有大分生孢子、小分生孢子及厚膜孢子等三種形態;大分生孢子 ( macroconidia ) 為鐮刀形,無色,具頂細胞 ( apical cell ) 與足細胞 ( foot cell ),著生於單瓶狀枝之分生孢子梗上,大小為 27.5 - 40.0 × 2.5 - 5.0 (33.7 × 4.7 ) μm,具 3~5 個隔膜;小分生孢子 ( microconidia ) 長橢圓形,無色,呈假頭狀著生於分生孢子梗上,大小為 5.0 - 10.0 × 2.5 - 3.8 (9.6× 3.1) μm;厚膜孢子 ( chlamydospores ) 近圓形,無色,大小為 7.5 - 15.0 × 6.3 - 16.3 ( 10.2 × 10.46 ) μm。FOM 02 與 FOM05 菌株的分生孢子與厚膜孢子發芽最適溫度分別為 24 - 28 ℃ 與 20 ℃;至於菌絲生長與產孢之最適溫度則均為 24 - 28 ℃。甜瓜自胚軸和根的交接處起向下 2 cm 的區域遭受本菌感染的百分率最高。甜瓜萎凋病菌的感染率與萎凋病害之罹病程度,隨土壤中病原菌濃度增加而提高,高量的病原菌亦會造成甜瓜植株生長受阻,其最適感染溫度為 24 - 28 ℃,當土壤中病原菌濃度為 104 CFU/g soil 時,播種 5 天後,甜瓜幼苗的感染率達 50%;將甜瓜種植於病原菌濃度為 105 CFU/g soil 的人工病土時,30 天內,其罹病度可達 71.2%。 比較銀輝、嘉玉、新玉、秋華一號、秋華二號、天華等 6 個甜瓜品系對本病菌的抗感病性,結果發現僅有薄皮甜瓜對本病原菌呈感病性。此外,在甜瓜幼苗生長的地基部澆灌 B. mycoides isolates CHT2401、WT01、NP02 及 LY01 數次後,發現它們均能顯著促進甜瓜之生長,其中又 CHT2401 與 NP02 可增進甜瓜之株蔓以及鮮重分別達 104.3 與 110.9%。將甜瓜種子分別粉衣處理 10 株不同的 B .mycoides 菌株 (108 CFU/ml) 後,播於人工病土中後,發現粉衣處理 CHT2402、WT09 及 NP02,可有效降低感染率 75-87.5 %,證明諸菌株具有潛力用於防治甜瓜萎凋病。
A wilt disease of melon plant ( Cucumis melo L. var. conomon Mak ) occurred in Taichung county during the summer in 2009. Symptoms of the infected melon were wilted, epinasty and yellowing of leaves and the inner tissues appeared brown in the vascular system. Two isolates FOM02 and FOM05 were isolated from the diseased plants, they were identified as Fusarium oxysporum by morphological characteristics and comparing the gene sequence of ITS region with the GenBank data bank. Base on pathogenecity tests, the pathogen exhibited host specificity on melon and no virulence on Chinese cabbage, cabbage , radish, green cauliflower, tomato, sweet pepper, amaranth, lettuce, celery, asparagus bean, cucumber, bottle gourd, watermelon and loofah, therefore, the pathogen was named as F. oxysporum Schlechtend.:Fr. f. sp. melonis (Leach & Currence) W.C. Snyder & H.N. Hans.. The morphology of the pathogen was observed on potato dextrose agar during they were cultured. The colonies are purplish-white and produced light orange to yellow sporodochia. Macroconidia are produced on monophialides, sickle-shaped, with apical cell and a foot-shaped basal cell, hyaline, 3-5 septated, 27.5-40.0 × 2.5-5.0 μm .Microconidia are produced abundantly from false heads, generally one cell, elliptical to ovate, hyaline, 5.0-10.0 × 2.5-3.8 μm. Chlamydospores are spherical to ovoid, smooth-surface, intercalary or terminal, 7.5-15.0 × 6.3-16.3 μm. The optimal temperatures for mycelial growth, conidial germination and sporulation of F. oxysporum f. sp. melonis isolates FOM02 and FOM05 were at 24-28 ℃, and chlamydospore germination of FOM05 in the soil was at 20 ℃. The root region 2 cm below stem base was major part of infection by the pathogen. The infection percentage of melon plant increased with increment of population density of F. oxysporum f. sp. melonis isolates FOM02 and FOM05 in the soil, and reached 50% at 5th day after seeds were sown in the soil infested with 104 CFU/g soil of the pathogen. The optimal temperature for infection was at 24-28 ℃. The wilting disease of melon was more severe when inoculum density were increased. The disease severity of melon Fusarium wilt was at 71.2% on 30th day after the plants were grown in soil infested with 105 CFU/g soil. To test susceptibility of 6 melon cultivars to the pathogen, ‘'silver light'', ''jill'' and ‘'jade' showed more susceptible compared to Tian-Hua, Autumn walts No.1 and No.2. Several isolates of Bacillus spp. were isolated from Kaohsiung, Taitung, Pingtung and Taichung, and treated to melon seedlings by 5 times. It was proved that CHT2401, WT01, LY01 and NP02 were able to promote the growth of melon seedlings. Especially, CHT2401 could enhance fresh weight and vine length of melon plants up to 104% and 77%, respectively. Melon seeds were respectively coated with spore suspension (108 CFU/ml) of B. mycoides isolates, CHT2402, WT09 and NP02 and sown in FOM05-infested soil. Three bacterial isolates were effective in reducing the infection of melon plants by the pathogen at 75-87.5 %%. The results suggest that B. mycoides isolates CHT2402, WT09 and NP02 are potential biocontrol agents in controlling melon Fusarium wilt.
URI: http://hdl.handle.net/11455/31464
其他識別: U0005-2308201021305500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308201021305500
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.