Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31486
標題: 應用紫丁香蘑的二次代謝物及其栽培廢棄基質防治作物病害
Application of Secondary Metabolites of Wood Blewit Fungus, Clitocybe nuda and Its Spent Culture Substrate for Control of Crop Diseases
作者: 陳錦桐
Chen, Jin-Tong
關鍵字: 生物防治
biocontrol
紫丁香蘑
二次代謝物
培養液
食用菇類
病害防治
番椒疫病
茄科細菌性斑點病
胡瓜猝倒病
廢棄堆肥
生物調製介質
Bacillus aryabhattai
SBMB配方
Clitocybe nuda
secondary metabolite
culture filtrate
edible mushroom
disease control
Phytophthora blight
pepper
Phytophthora capsici
Pythium damping-off
Pythium aphanidermatum
Xanthomonas axonopodis pv. vesicatoria
spent blewit mushroom compost (SBMC)
Bacillus aryabhattai
bioformulated medium
出版社: 植物病理學系所
引用: Literature cited Chapter 1 1. Adrio, J. L., and Demain, A. L. 2003. Fungal biotechnology. Int. Microbiol. 6: 191-199. 2. Anke, T. 1989. Basidiomycetes: a source for new bioactive secondary metabolites. Prog. Ind. Microbiol. 27: 51-66. 3. Anke, T. 1995. The antifungal strobilurins and their possible ecological role. Can. J. Bot. 73: 940-945. 4. Anke, T. 1997. Strobilurins. Pages 206-212 in: Fungal Biotechnology. Anke, T. ed. Chapman and Hall, London. 5. Anke, T., Hecht, H. T., Schramm, G., and Streglich, W. 1979. Antibiotics from basidiomycetes. IX. Oudemansin, an antifungal antibiotic from Oudemansiella mucida (Schrader ex Fr.) Hoehnel (Agaricales). J. Antibiot. 32: 1112-1117. 6. Anke, T., Werle, A., Bross, M., and Steglich, W. 1990. Antibiotics from basidiomycetes. XXXIII. Oudemansin X, a new antifungal (E)-β-methoxyacrylate from Oudemansiella radicata (Relhan ex Fr.) Sing. J. Antibiot. 43: 1010-1011. 7. Archer, D. B. 2000. Filamentous fungi as microbial cell factories for food use. Curr. Opin. Biotechnol. 11: 478-483. 8. Arnone, A., Nasini, G., and Pava, O. V. 2000. Structure and absolute configuration of new acetylenic compounds isolated from cultures of Clitocybe catinus. Phytochemistry 53: 1087-1090. 9. Atsumi, S., Umezawa, K., Iinua, H., Naganawa, H., Nakamura, H., Iitaka, Y., and Takeuchi, T. 1990. Production, isolation and structure determination of a novel beta glucosidase inhibitor, Cyclophellital, from Phellinussp. J. Antibiot. 43: 49-53. 10. Ayer, W. A., and Browne, L. M. 1981. Terpenoid metabolites of mushrooms and related Basidomycetes. Tetrahedron 37: 2199-2248. 11. Barley, G. C., Graf, U., Higham, C. A., Cathryn, A., Jarrah, M. Y., and Jones, E. R. H. 1987. Natural acetylenes. Part 61. Fungal polyacetylenes and the crepenynate pathway: The biosynthesis of some C9-C14 polyacetylenes in fungal cultures. J. Chem. Res. 7: 232-233. 12. Berg, A., Dörfelt, H., Kiet, T. T., Schelgel, B., and Gräfe, U. 2002. Agrocybolacton, a new bioactive metabolite from Agrocybe sp. HKI 0259. J. Antibiot. 55: 818-820. 13. Brandt, C. R., and Piraino, F. 2000. Mushroom antivirals. Recent Res. Dev. Antimicrob. Agents Chemother. 4: 11-26. 14. Brian, D. 1951. Antibiotics produced by fungi. Bat. Rev. 17: 357-430. 15. Champavier, Y., Pommier, M., Arpin, N., Voiland, A., and Pellon, G. 2000. 10-oxo-trans-8-decenoic acid (ODA): production, biological activities, and comparison with other hormone-like substances in Agaricus bisporus. Enzyme Microb. Technol. 26: 243-251. 16. Chihara, G. 1992. Immunopharmacology of lentinan, a polysaccharide isolated from Lentinus edodes: Its applications as a host defense potentiator. Int. J. Orintal Med. 17: 57-77. 17. Chu, K. T., Xia, L., and Nga, T. B. 2005. Pleurostrin, an antifungal peptide from the oyster mushroom. Peptides 26: 2098-2103. 18. Clough, J. M., Godfrey, C. R. A., Godwin, J. R., Joseph, R. S. I., and Spinks, C. 1996. Azoxystrobin: a novel broad-spectrum systemic fungicide. Pesticide Outlook. 7: 16-20. 19. Dagne, E., Asmellash, S., and Abate, D. 1994. An antifungal polyacetylenic compound from the culture filterate of the fungus Trametes pubescens. J. Nat. Prod. 57: 390-392. 20. Demain, A. L. 1996. Fungal secondary metabolism: regulation and functions. Pages 233-254 in: A Century of Mycology. Sutton, B. ed. Cambridge University Press, UK. 21. Dufosse, L., Galaup, P., Yaron, A., Arad, S. M., Blanc, P., Murthy, K. N. C., and Ravishankar , G. A. 2005. Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci. Technol. 16: 389-406. 22. Ennamany, R., Kretz, O., Badoc, A., Deffieux, G., and Creppy, E. E. 1994. Effect of bolesatine, a glycoprotein from Boletus satanas, on rat thymus in vivo. Toxicology 89: 113-118. 23. Enshasy, H. E., Daba, A., Demellawy, E., Ibrahim, A., Sayed, S. E., and Badry, I. E. 2010. Bioprocess development for large scale production of anticancer exo-polysaccharide by Pleurotus ostreatus in submerged culture J. Applied Sci. 10: 2523-2529. 24. Farrell, I. W., Keeping, J. W., Pellatt, M. G., Martin, G., and Thaller, V. 1973. Natural acetylenes. XLI. Polyacetylenes from fungal fruiting bodies. J. Chem. Soc. Perkin Trans. 22: 2642-2643. 25. Florianowicz, T. 1999. Antifungal activity of some metabolites of higher fungi (Basidiomycetes) - An overview. Acta. Soc. Bot. Poloniae 68: 307-310. 26. Gerasimenya, V. P., Efremenkova, O. V., Kamzolkina, O. V., Bogush, T. A., Tolstych, I. V., and Zenkova, V. A. 2002. Antimicrobial and antitoxical action of edible and medicinal mushroom Pleurotus ostreatus (Jacq.:Fr.) Kumm. extracts. Int. J. Med. Mushroom 4: 106. 27. Gerasimenya, V. P., Efremenkova, O.V., Kamazolkina, O.V., Bogus, T.,A., Tolstych, I. V., and Zenkova, V. A. 2001. Antimicrobial and antitoxic action of Pleurotus ostreatus (Jacq.:Fr.) Kumm. extracts. Int. J. Med. Mushroom 3: 147. 28. Griffin, D. H. 1994. “Fungal Physiology.” Second Edition ed. Wiley-Liss, New York. 29. Guillot, J., and Konska, G. 1997. Lectins in higher fungi. Biochem. Sys. Ecol. 25: 203-230. 30. Hawksworth, D. L. 1991. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol. Res. 95: 641-655. 31. Herms, S., Seehaus, K., Koehle, H., and Conrath, U. 2002. A strobilurin fungicide enhances the resistance of tobacco against Tobacco mosaic virus and Pseudomonas syringaes pv. tabaci. Plant Physiol. 130: 120-127. 32. Hervey A. H. 1947. A survey of 500 basidiomycetes for antibacterial activity. Bull. Torrey Bot. Club 74: 476-503. 33. Johansson, M., Sterner, O., Labischinski, H., and Anke, T. 2001. Coprinol, a new antibiotic cuparane fron Coprinus species. Z. Naturforsch. 56: 31-34. 34. Jonathan, S. G., and Fasidi, I. O. 2003. Antimicrobial activities of two Nigerian edible macro fungi -Lycoperdon pusilum (Bat. Ex) and Lycoperdon giganteus (Pers). Afr. J. Biomed. Res. 6: 85-90. 35. Jones, E. R. H., Lowe, G., and Shannon, P. V. R. 1966. Natural acetylenes. 20. Tetra-acetylenic and other metabolites from Fistulina hepatica. J. Chem. Soc. 2: 39-144. 36. Jones, E. R. H., Piggin, C. M., Thaller, V., and Turner, J. L. 1977. Natural acetylenes. Part I. The origin of the carbon skeleton of C8 fungal polyacetylenes and the C8 thiophene acetylene. J. Chem. Res. 3. 744p. 37. Kavanagh, F., Hervey, A., and Robbins, W. J. 1950. Antibiotic substances from basidiomycetes. VI. Agrocybe dura. Proc. Natl. Acad Sci. USA 36:102-106. 38. Kuhnt, D., and Anke, T. 1990. New inhibitors of cholestrol biosynthesis from culture of Xerula melanotrich. J. Antibiot. 43: 1413-1420. 39. Kupra, J., Anke, T., Oberwinkler, G., Schramn, G., and Steglich, W. 1979. Antibiotics From basidiomycetes VII. Crinipellis stripitaria (Fr.) Pat., J. Antibiot. 32: 130-135. 40. Lam, S. K., and Ng, M. L. 2001a. First simultaneous isolation of ribosome inactivating protein and an antifungal protein from a mushroom (Lyophyllum shimeji) together with evidence for synergism of their antifungal effects. Arch. Biochem. Biophy. 393: 271-280. 41. Lam, S. K., and Ng, T. B. 2001b. Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus. Biochem. Biophysic. Res. Commun. 285: 1071-1075. 42. Larsen, T. O., Smedsgaard, J., Nielsen, K. F., Hansen, M. E., and Frisvad, J. C. 2005. Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Nat. Prod. Rep. 22: 672-695. 43. Levy, L. M., Cabrera, G. M., Wright, J. E., and Seldes, A. M. 2000. 5H-furan- 2-ones from fungal cultures of Aporpium caryae. Phytochemistry 62: 239-243. 44. Lin, J. Y., and Chou, T. B. 1984. Isolation and characterization of a lectin from edible mushroom, Volvariella volvacea. J. Biochem. 96: 35-40. 45. Lindequist, U., Niedermeyer, T. H. J., and Jülich, W. D. 2005. The pharmacological potential of mushrooms. Evidence-based Complementary and Alternative Medicine (eCAM). 2: 285-299. 46. Lindequist, U., Teuscher, E., and Narbe, G. 1990. Neue Wirkstoffe aus Basidiomyceten. Z. Phytother.11: 139-49 (in German). 47. Litchfield, J. H., Overbeck, R. C., and Davidson, R. S. 1963. Mushroom culture: factor affecting the growth of morel mushroom mycelium in submerged culture. J. Agric. Food Chem. 11: 158-162. 48. Luchese, R., Harrigan, W. 1993. Biosynthesis of aflatoxin the role of nutricional factors. J. Appl. Bacteriol. 74: 5-14. 49. Mapari, S. A. S., Nielsen, K. F., Larsen, T. O., Frisvad, J. C., Meyer, A. S., and Thrane, U. 2005. Exploring fungal biodiversity for water-soluble pigments as potential natural food colorants. Curr. Opin. Biotechnol. 16: 231-238. 50. Martin, J. F., and Demain, A. L. 1980. Control of antibiotic biosynthesis. Microbiol. Rev. 44: 230-251. 51. Mothana, R. A. A., Jansen, R., Jülich, W. D., and Lindequist, U. 2000. Ganomycin A and B, new antimicrobial farnesyl hydroquinones from the basidiomycete Ganoderma pfeifferi. J. Nat. Prod. 63: 416-8. 52. Ng, T. B., Ngai, P. H. K., and Xia, L. 2006. An agglutinin with mitogenic and antiproliferative activities from the mushroom Flammulina velutipes. Mycologia 98: 167-171. 53. Ngai, P., and Ng, T. 2003. Lentin, a novel and potent antifungal protein from shiitake mushroom with inhibitory effect on activity of human immunodeficiency virus-1 reverse transcriptase and proliferation of leukemia cells. Life Sci. 73: 3363-3374. 54. Nigam, V. K., Verma, R., Kumar, A., Kundu, S., and Ghosh, P. 2007. Influence of medium constituents on the biosynthesis of cephalosporin-C. Electronic Journal of Biotechnology. 10: 230-239. 55. Nora, H. 2001. Antibacterial effect of the culture fluid of Lentinus edodes mycelium grown in submerged liquid culture. Int. J. Antimicrob. Agents 17: 71-74. 56. Okull, D. O., Beelman, R. B., and Gourama, H. 2003. Antifungal activity of 10-oxo-trans-8-decenoic acid and 1-octen-3-ol against Penicillium expansum in potato dextrose agar medium. J. Food Prot. 66: 1503-1505. 57. Pacumbaba, R. P., Beuel, C. A., and Pacumbaba, R. O. Jr. 1999. Shiitake mycelial leachate suppress growth of some bacterial wilt of tomato and lima bean in vitro. Plant Dis. 83: 20-23. 58. Pujol, V., Seux, V., and Villard, J. 1990. Recherche de substances antifongiques sécrétées par les champignons supérieurs en culture. Ann Pharmaceutiques Françaises 48: 17-22. 59. Rosa, L. H., Machado, K. M. G., Jacob, C. C., Capelari, M., Rosa, C. A., and Zani, C. L. 2003. Screening of Brazilian basidiomycetes for antimicrobial activity. Mem. Inst. Oswaldo Cruz, Rio de Janeiro. 98: 967-974. 60. Rosa, L. H., Souza-Fagundes, E. M., Machado, K. M. G., Alves, T. M. A., Martins-Filho, O. A., Romanha, A. J., Oliveira R. C., Rosa, C.A., and Zani, C. L. 2006. Cytotoxic, immunosuppressive and trypanocidal activities of agrocybin, a polyacetylene produced by Agrocybe perfecta (Basidiomycota). World J. Microbiol. Biotechnol. 22: 539-545. 61. Schwope, D. M., Givan, G. V., and Minto, R. E. 2003. Progress toward the synthesis of Fistulina hepatica natural products. 225th ACS National Meeting. Washington, American Chemical Society, USA. (Abstracts). 62. Shu, C. H., Lin, K. J., and Wen, B. J. 2004. Effects of culture pH on the production of bioactive polysaccharides by Agaricus blazei in batch cultures. J. Chem. Technol. Biotechnol. 79: 998-1002. 63. Smania, A., Monache, F. D., Loguericio, L. C., Smania, E. F. A., and Gerber, A. L. 2001. Antimicrobial activity of basidiomycetes. Int. J. Med. Mushroom 3: 87-88. 64. Song, G. H., Cho, K. Y., and Nair, N. G. 1987. A synthetic medium for production of submerged culture of Lentinus edodes. Mycologia 76: 860-870. 65. Stadler, M., Mayer, A., Anke, T., and Sterner, O. 1994. Fatty acid and other compounds with nematocidal activity from cultures of basidiomycetes. Planta Med.60: 128-132. 66. Stamets, P. 1993. Growing Gourmet and Medicinal Fungi. Ten Speed. Berkeley.CA. Suzuki, H., Okubo, A., Yamazaki, S., Suzuki, K., Mitsuya, H., and Toda, S. 1989. Inhibition of the infectivity and cytopathic effect of human immunodeficiency virus by water-soluble lignin in an extract of the culture medium of Lentinus edodes mycelia (LEM). Biochem. Biophys. Res. Commun. 160: 367-373. 67. Suay, I., Arenal, F., Asensio, F. J., Basilio, A., Cabello, M. A., Díez, M. T., García, J. B., Val, A. G., Gorrochategui, J., Hernández, P., Peláez, F., and Vicente, M. F. 2000. Screening of basidiomycetes for antimicrobial activities. Antonie van Leeuwenhoek 78: 129-139. 68. Suzuki, H., Iiyama, K., Yoshida, O., Yamazaki, S. Yamamoto, N., and Toda, S. 1990. Structural characterization of the immunoactive and antiviral water-solubilized lignin in an extract of the culture medium of Lentinus edodes mycelia (LEM). Agric. Biol. Chem. 54: 479-487. 69. Taha, A. A. 2000. Acetylenes and dichloroanisoles from Psathyrella scobinacea. Phytochemistry 55: 921-926. 70. Thrane, U., Andersen, B., Frisvad, J. C., and Smedsgaard, J. 2007. The exo-metabolome in filamentous fungi. In: Nielsen J, Hewitt J (eds.): Metabolomics. A powerful tool in systems biology, Springer, Berlin. Topics in Current Genetics 18: 235-252. 71. Tochikura, T. S., Nakashima, H., Ohashi, Y., and Yamamoto. 1988. Inhibition (in vitro) of Replication and of the Cytopathic effect of Human immunodeficiency virus by an extract of the culture medium of Lentinus edodes mycelia. Med. Microbiol. Imm. 177: 235 - 244. 72. Tsuge, N., Mori, T., Hamano, T., Tanaka, H., Shin-Ya, K., and Seto, H. 1999. Cinnatriacetins A and B, new antibacterial triacetylene derivatives from the fruiting bodies of Fistulina hepatica. J. Antibiot. 52: 578-581. 73. Vahidi, H., Mojab, F., and Taghavi, N. 2006. Effects of carbon sources on growth and production of antifungal agents by Gymnopilus spectabilis. Iranian J. Pharm. Res. 3: 219-222. 74. Van-Der-Ham, L. G., Van-Der-Vliet, J. A., Bocken, C. F. M., Kino, K., Hoitsma, A. J., and Tax, W. J. M. 1995. Studies on a new immunomodulating agent. Transplantation 60: 438-443. 75. Wang, H. X., Ng, T. B., and Ooi, V. E. C. 1998. Lectins from mushrooms. Mycol. Res. 102: 897-906. 76. Wang, H. X., Ng, T. B., Liu, W. K., Ooi, V. E. C., and Chang, S. T. 1995. Isolation and characterization of two distinct lectins with antiproliferative activity from the cultured mycelium of the edible mushroom Tricholoma mongolicum. Int. J. Pep. Protein Res. 46: 508-513. 77. Wasser, S. P., and Weis, A. L. 1999. Therapeutic effects of substances occurring in higher basidiomycetes mushrooms: a modern perspective. Crit. Rev. Immunol. 19: 65-96. 78. Wasser, S. P., and Weis, A. L. 1999b. Medicinal properties of substances occurring in higher Basidiomycete mushrooms: current perspectives (review). Int. J. Med. Mushroom 1: 31-62. 79. Wu, A. M., Wu, J. H., Herp, A., and Liu, J. H. 2003. Effect of polyvalencies of glycotopes on the binding of a lectin from edible mushroom, Agaricus bisporus. Biochem. J. 371: 311-320. 80. Zhao, C., Sun, H., Tong, X., and Qi, Y. 2003. An antitumor lectin from the edible mushroom Agrocybe aegerita. Biochem. J. 374: 321-327. Chapter 2 1. Anke, T. 1989. Basidiomycetes: a source for new bioactive secondary metabolites. Prog. Ind. Microbiol. 27: 51-66. 2. Anke, T. 1995. The antifungal strobilurins and their possible ecological role. Can. J. Bot. 73: 940-945. 3. Anke, T. 1997. Strobilurins. Pages 206-212 in: Fungal Biotechnology. Anke, T. ed. Chapman and Hall, London. 4. Arnone, A., Nasini, G., and Vajna, de P. O. 1997. Marasmane sesquiterpenes from the basidiomycete Clitocybe hydrogramma. Phytochemistry 46: 1099-1101. 5. Benedict, R. G., and Brady, L. R. 1972. Antimicrobial activity of mushroom metabolites. J. Pharm. Sci. 61: 1820-1822. 6. Breene, W. M. 1990. Nutritional and medicinal value of specialty mushrooms. J. Food Protec. 53: 883-894. 7. Chang, S. T., Buswell, J. A., and Miles, P. G. 1991. Genetics and Breeding of Edible Mushrooms. SA. Amsterdam, Gordon and Breach Science Press. 8. Dulger, B., Ergul, C. C., and Gucin, F. 2002. Antimicrobial activity of the macrofungus Lepista nuda. Fitoterapia 73: 695-697. 9. Florey, H. W., Chain, E., Heatley, N. G., Jennings, M. A., Sanders, A. G., Abraham, E. P., and Florey, M. E. 1949. Antibiotics. Oxford University Press, London. 554 pp. 10. Hautzel, R., and Anke, T. 1990. Screening of basidiomycetes and ascomycetes for plant growth regulating substances. Introduction of the gibberellic acid induced de-novo synthesis of hydrolytic enzymes in embryoless seeds of Triticum aestivum as test system. Z. Naturforsch 45: 1093-1098. 11. Heim, R. 1963. Les Champignons Toxiques et Hallucinogenes. Boubee Press, Paris. 327 pp. 12. Hewitt, H. G. 1998. Fungicides in Crop Protection. CABI Publishing, Wallingford, Oxon, UK. 232 pp. 13. Hickey, K. D. 1986. Methods for Evaluating Pesticides for Control of Plant Pathogens. APS Press, MN, USA. 312 pp. 14. Ho, W. C., Su, H. J., Li, J. W., and Ko, W. H. 2007. Effect of extracts of Chinese medicinal herbs on spore germination of Alternaria brassicicola and nature of an inhibitory from gallnuts of Chinese sumac (Rhus Chinensis). Can. J. Plant Pathol. 28: 519-525. 15. Ho, W. C., Wu, T. Y., Su, H. J., and Ko, W. H. 2007. Effect of oriental medicinal plant extracts on spore germination of Alternaria brassicicola and nature of inhibitory substances from speedweed. Plant Dis. 91: 1621-1624. 16. Janssens, L., De Pooter, H. L., Schamp, N. M., and Vandamme, E. J. 1992. Production of flavors by microorganisms. Proc. Biochem. 27: 195-215. 17. Jonathan, S. G., and Fasidi, I. O. 2003. Antimicrobial activities of two Nigerian edible macro fungi -Lycoperdon pusilum (Bat. Ex) and Lycoperdon giganteus (Pers). Afr. J. Biomed. Res. 6: 85-90. 18. Jong, S. C., and Birmingham, J. M. 1993. Medicinal and therapeutic value of the shiitake mushroom. Adv. Appl. Microbiol. 39: 153-184. 19. Ko, W. H., Chase, L., and Kunimoto, R. 1973. A microsyringe method for determining concentration of fungal propagules. Phytopathology 63: 1206-1207. 20. Korzybski, T., Kowszyk, G. Z., and Kurylowicz, W. 1967. Antifungal antibiotics (polyenes). Pages 450-715 in: Antibiotics: Origin, Nature and Properties. Korzybski, T. ed. Translated by Paryski, E. Pergamon Press, Oxford. 21. Lingappa, B. T., Lingappa, Y., and Bell, E. 1973. A self inhibitor of protein synthesis in the conidia of Glomerella cingulata. Arch. Microbiol. 94: 97-107. 22. Mustafa, Y., and Bilgili, F. 2006. Antimicrobial activities of fruit bodies and/or mycelial cultures of some mushroom isolates. Pharm. Biol. 44: 660-667. 23. Muto, M., Takahashi, H., Ishihara, K., Yuasa, H., and Huang, J. W. 2005. Antimicrobial activity of medicinal plant extracts used by indigenous people in Taiwan. Plant Pathol. Bull. 14: 13-24. 24. Pacumbaba, R. P., Beyl, C. A., and Pacumbaba, R. O. Jr. 1999. Shiitake mycelial leachate suppresses growth of some bacterial species and symptoms of bacterial wilt of tomato and limabean in vitro. Plant Dis. 83: 20-23. 25. Pandey, V. N., and Dubey, N. K. 1994. Antifungal potential of leaves and essential oils from higher plants against soil phytopathogens. Soil Biol. Biochem. 26: 1417-1421. 26. Sidorova, I. I., and Velikanov, L. L. 2000. Bioactive substances of agaricoid basidiomycetes and their possible role in regulation of myco-and microbiota structure in soils of forest ecosystems. II. Antibiotic activity in cultures of litter saprotrophic mushroom Lepista nuda. Mikol. Fitopatol. 34: 10-16. 27. Stamets, P. 1993. Growing Gourmet and Medicinal Mushrooms. Edited by C.A. Berkeley, Ten Speed Press. 552 pp. 28. Suay, I., Arenal, F., Asensio, F. J., Basilio, A., Cabello, M. A., Díez, M. T., García, J. B., Val, A. G., Gorrochategui, J., Hernández, P., Peláez, F., and Vicente, M. F. 2000. Screening of basidiomycetes for antimicrobial activities. Antonie Leeuwenhoek 78: 129-139. 29. Sunwoo, J. Y., Lee, Y. K., and Hwang, B. K. 1996. Induced resistance against Phytophthora capsici in pepper plants in response to DL-β-amino-n-butyric acid. Eur. J. Plant Pathol. 102: 663- 670. 30. Tochikura, T. S., Nakashima, H., Ohashi, Y., and Yamamoto, N. 1988. Inhibition (in vitro) of replication and of the cytopathic effect of human immunodeficiency virus by an extract of the culture medium of Lentinus edodes mycelia. Med. Microbiol. Imm. 177: 235-244. 31. Xu, X. L., and Ko, W. H. 1998. A quantitative confined inoculation method for studies of pathogenicity of fungi on plants. Bot. Bull. Acad. Sin. 39: 187-190. Chapter 3 1. Anke, T. 1989. Basidiomycetes: a source for new bioactive secondary metabolites. Prog. Ind. Microbiol. 27: 51-66. 2. Anke, T. 1995. The antifungal strobilurins and their possible ecological role. Can. J. Bot. 73: 940-945. 3. Anke, T. 1997. Strobilurins. Pages 206-212 in: Fungal Biotechnology. Anke, T. ed. Chapman and Hall, London. 4. Arnone, A., Nasini, G. and Vajna, d. P. O. 1997. Marasmane sesquiterpenes from the basidiomycete Clitocybe hydrogramma. Phytochemistry 46: 1099-1101. 5. Benedict, R. G., and Brady, L. R. 1972. Antimicrobial activity of mushroom metabolites. J. Pharm. Sci. 61: 1820-1822. 6. Breene, W. M. 1990. Nutritional and medicinal value of specialty mushroom. J. Food Protect. 53: 883-894. 7. Chang, S. T., Buswell, J. A., and Miles, P. G. 1993. Genetics and Breeding of Edible Mushrooms. Gordon and Breach Science Publishers, Amsterdam. 324 pp. 8. Chen, J. T., Li, W. S. and Wu, K. T. 2007. Effects of culture media and casing materials on fruiting characterics of Coprinus comatus. J. Taiwan Agric. Res. 56: 316-326. (inchinese with english abstract ) 9. Dulger, B., Ergul, C. C., and Gucin, F. 2002. Antimicrobial activity of the macrofungus Lepista nuda. Fitoterapia 73: 695-697. 10. Hautzel, R., and Anke, T. 1990. Screening of basidiomycetes and ascomycetes for plant growth regulating substances. Introduction of the gibberellic acid induced de-novo synthesis of hydrolytic enzymes in embryoless seeds of Triticum aestivum as a test system. Z. Naturforsch. 45: 1093-1098. 11. Heim, R. 1963. Les Champignons Toxiques et Hallucinogènes. N. Boubée and Cie, Paris, France. 328 pp. (in France) 12. Hewitt, H. G. 1998. Fungicides in Crop Protection. CABI Publishing, UK. 13. Hickey, K.D. 1986. Methods for Evaluating Pesticides for Control of Plant Pathogens. APS Press, MN, USA. 312 pp. 14. Ho, W. C., Su, H. J., Li, J. W., and Ko, W. H. 2007. Effect of extracts of Chinese medicinal herbs on spore germination of Alternaria brassicicola and nature of an inhibitor from gallnuts of Chinese sumac (Rhus Chinensis). Can. J. Plant Pathol. 28: 519-525. 15. Ho, W. C., Wu, T. Y., Su, H. J., and Ko, W. H. 2007. Effect of oriental medicinal plant extracts on spore germination of Alternaria brassicicola and nature of inhibitory substances from speedweed. Plant Dis. 91: 1621-1624. 16. Ishikawa, N. K., Fukushi, Y., Yamaji, K., Tahara, S., and Takahashi, K. 2001. Antimicrobial cuparene-type sesquiterpenes, enokipodins C and D, from a mycelial culture of Flammulina velutipes. J. Nat. Prod. 64: 932-934. 17. Janssens, L., De Pooter, H. L., Schamp, N. M., and Vandamme, E. J. 1992. Production of flavors by microorganisms. Proc. Biochem. 27: 195-215. 18. Jong, S. C., and Birmingham, J. M. 1993. Medicinal and therapeutic value of the shiitake mushroom. Adv. Appl. Microbiol. 39: 153-184. 19. Kawagishi, H., Mitsunaga, S. I., Yamawaki, M., Ido, M., Shimada, A., Knoshita, T., Murata, T., Usui, T., Kimura, A., and Chiba, S. 1997. A lectin from mycelia of the fungus Ganoderma lucidum. Phytochemistry 44: 7-10. 20. Ko, W. H., Chase, L., and Kunimoto, R. 1973. A microsyringe method for determining concentration of fungal propagules. Phytopathology 63: 1206-1207. 21. Korzybski, T., Kowszyk, G. Z. and Kurylowicz, W. 1967. Antifungal antibiotics (polyenes). Pages 769-820 in: Antibiotics: Origin, Nature and Properties. Korzybski, T., ed. Polish Scientific Publishers, Oxford. 22. Lingappa, B. T., Lingappa, Y., and Bell, E. 1973. A self inhibitor of protein synthesis in the conidia of Glomerella cingulata. Arch. Microbiol. 94: 97-107. 23. Mustafa, Y., and Bilgili, F. 2006. Antimicrobial activities of fruit bodies and/or mycelial cultures of some mushroom isolates. Pharm. Biol. 44: 660-667. 24. Muto, M., Takahashi, H. Ishihara, K. Yuasa, H., and Huang, J. W. 2005. Antimicrobial activity of medicinal plant extracts used by indigenous people in Taiwan. Plant Pathol. Bull. 14: 13-24. 25. Okamoto, K., Shimada, A., Shirai, R., Sakamoto, H., Yoshida, S., Ojima, F., Shiguro, Y., Sakai, T., and Kawagishi, H. 1993. Antimicrobial chlorinated orcinol derivatives from mycelia of Hericium erinaceum. Phytochemistry 34: 1445-1446. 26. Pacumbaba, R. P., Beyl, C. A., and Pacumbaba Jr, R. O. 1999. Shiitake mycelial leachate suppresses growth of some bacterial species and symptoms of bacterial wilt of tomato and lima bean in vitro. Plant Dis. 83: 20-23. 27. Pandey, V. N., and Dubey, N. K. 1994. Antifungal potential of leaves and essential oils from higher plants against soil phytopathogens. Soil Biol. Biochem. 26: 1417-1421. 28. Sambrook, J., and Russell, D.W. 2001. Molecular Cloning, a Laboratory Manual (3rded.), Cold Spring Harbor Labortory Press. New York. 2344 pp. 29. Sidorova, I. I., and Velikanov, L. L. 2000. Bioactive substances of agaricoid basidiomycetes and their possible role in regulation of myco- and microbiota structure in soils of forest ecosystems. II. Antibiotic activity in cultures of litter saprotrophic mushroom Lepista nuda. Mycol. Phytopat. 34: 10-16. 30. Suay, I., Arenal, F., Asensio, F. J., Basilio, A., Cabello, M. A., Díez, M. T., García, J. B., Val, A. G., Gorrochategui, J., Hernández, P., Peláez, F., and Vicente, M. F. 2000. Screening of basidiomycetes for antimicrobial activities. Antonie van Leeuwenhoek 78: 129-139. 31. Tochikura, T. S., Nakashima, H., Ohashi, Y., and Yamamoto, N. 1988. Inhibition (in vitro) of replication and of the cytopathic effect of human immunodeficiency virus by an extract of the culture medium of Lentinus edodes mycelia. Med. Microbiol. Immunol. 177: 235-244. 32. Xu, X. L., and Ko, W. H. 1998. A quantitative confined inoculation method for studies of pathogenicity of fungi on plants. Bot. Bull. Acad. Sin. 39: 187-190. Chapter 4 1. Abdel-Halim, O. B., Marzouk, A. M., Mothana, R., and Awadh, N. 2008. A new tyrosinase inhibitor from Crinum yemense as potential treatment for hyperpigmentation. Pharmazie. 63: 405-408. 2. Anke, T. 1989. Basidiomycetes: a source for new bioactive secondary metabolites. Prog. Ind. Microbiol. 27: 51-66. 3. Anke, T. 1995. The antifungal strobilurins and their possible ecological role. Can. J. Bot. 73: 940-945. 4. Anke, T. 1997. Strobilurins. Pages 206-212 in: Fungal Biotechnology. Anke, T. ed. Chapman and Hall, London. 5. Arnone, A., Nasini, G., and Vajna de Pava, O. 1997. Marasmane sesquiterpenes from the basidiomycete Clitocybe hydrogramma. Phytochemistry 46: 1099-1101. 6. Benedict, R. G., and Brady, L. R. 1972. Antimicrobial activity of mushroom metabolites. J. Pharm. Sci. 61: 1820-1822 7. Chen, J. T., and Huang, J. W. 2009. Control of plant diseases with secondary metabolites of Clitocybe nuda. New Biotechnology 26: 193-198. 8. Chen, J. T., Li, W. S., and Wu, K. T. 2007. Effects of culture media and casing materials on fruiting characterics of Coprinus comatus. J. Taiwan Agric. Res. 56: 316-326. 9. Dulger, B. Ergul, C. C., and Gucin, F. 2002. Antimicrobial activity of the macrofungus Lepista nuda. Fitoterapia 73: 695-697. 10. Erwin, D. C., and Ribeiro, O. K. 1996. Phytophthora Diseases Worldwide. American Phytopathological Society, St. Paul, MN. 562 pp. 11. Hautzel, R., and Anke, H. 1990. Screening of basidiomycetes and ascomycetes for plant growth regulating substances. Introduction of the gibberellic acid induced de-novo synthesis of hydrolytic enzymes in embryoless seeds of Triticum aestivum as a test system. Z. Naturforsch. 45: 1093-1098 12. Hwang, B. K., and Kim, D. H. 1995. Phytophthora blight of pepper and its control in Korea. Plant Dis. 79: 221-227. 13. Kiuchi, F., Takashima, H., and Tsuda, Y. 1998. Dimerization of 2,5-Dihydroxybezoquinones in water. Chem. Pharm. Bull. 46: 1129-1234. 14. Korzybski, T., Kowszyk, G. Z., and Kurylowicz, W. 1967. Antifungal antibiotics (polyenes). Pages 769-820 in: Antibiotics: Origin, Nature and Properties. Korzybski, T. ed. Polish Scientific Publishers, Oxford. 15. Mehrotra, R., Vishwakarma, R. A., and Thakur, R. S. 1989. Anietane diterpenoid from Coleus zeylanicus. Phytochemistry 28: 3135-3137. 16. Mustafa, Y., and Bilgili, F. 2006. Antimicrobial activities of fruit bodies and/or mycelial cultures of some mushroom isolates. Pharm. Biol. 44: 660-667. 17. Sangita, D., and Agate, A. D. 2000. Antibacterial activity of some Indian mushrooms. Int. J. Med. Mushroom 2: 141-150. 18. Schulte, K. E., Ruucker, G., and EL-Kersch, M. 1972. Nicotin und 3-formoyl-4-hydroxy-2H-pyran aus Herpestis moniera. Phytochemistry 11: 2649-2651. 19. Stevens, R. V. Angle, S. R. Mark, K. K. Trueblood, K. N., and Liu, Y. X. 1986. Quassinoid. 2 A new approach to the BCD ring system. J. Org. Chem. 51: 4347-4353. 20. Suay, I., Arenal, F., Asensio, F. J., Basilio, A., Cabello, M. A., Díez, M. T., García, J. B., Val, A. G., Gorrochategui, J., Hernández, P., Peláez, F., and Vicente, M. F. 2000. Screening of basidiomycetes for antimicrobial activities. Antonie van Leeuwenhoek 78: 129-139. Chapter 5 1. Asaka, O., and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62: 4081-4085. 2. Bailey, K. L., and Lazarovits, G. 2003. Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res. 72: 169-180. 3. Bateman, D. F., and Lumsden, R. D. 1965. Relation of calcium content and nature of the pectic substance in bean hypocotyls of different ages to susceptibility to an isolate Rhizoctonia solani. Phytopathology 55:734-738. 4. Bergsma-Vlami, M., Prins, M. E., Staats, M., and Raaijmakers, J. M. 2005. Assessment of genotypic diversity of antibiotic producing Pseudomonas species in the rhizosphere by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 71: 993-1003. 5. Chen, J. T., and Huang, J. W. 2009. Control plat diseases with secondary metabolite of Clitocybe nuda. New Biotech. 26: 193-198. 6. Dahiya, N. 2005. Production of an Antifungal Chitinase from Enterobacter sp. NRG4 and its application in protoplast production. World J. Microbiol. Biotechnol. 21: 8-9. 7. Endo, R. M., and Colt, W. M. 1974. Anatomy, cytology, and physiology of infection by Pythium. Proc. Am. Phytopathol. Soc. 1:215-223. 8. Folman, L. B., De Klein, M. J. E. M., Postma, J., and Van Veen, J. A. 2004. Production of antifungal compounds by Lysobaster enzymogenes isolate 3.1T8 under different conditions in relation to its efficacy as a biocontrol agent of Pythium aphanidermatum in cucumber. Biol. Control 31: 145-154. 9. Fravel, D. R. 1988. Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol. 26: 75-91. 10. Ha, M. T., Huang, Y. M., and Huang, J. W. 2008. Influence of organic amendment and Bacillus subtilis on mineral nutrient uptake of asparagus bean in two field soils. Plant Pathol. Bull. 17: 289-296. 11. Hadar, Y., and Mandelbaum, R. 1986. Suppression of Pythium aphanidermatum damping-off in container media containing composted liquorice roots. Crop Prot. 5: 88-92. 12. Hoitink, H. A. J., Stone, A. G., and Han, D. Y. 1997. Suppression of plant diseases by composts. HortScience 32: 184-187. 13. Hoitink, H. A. J., Inbar, Y., and Boehm, M. J. 1991 Status of compost-amended potting mixes naturally suppressive to soilborne diseases of floricultural crops. Plant Dis. 75: 869-873. 14. Huang, J. W., and Huang, H. C. 2000. A formulated container medium suppressive to Rhizoctonia damping-off of cabbage. Bot. Bull. Acad. Sin. 41: 49-56. 15. Huang, J. W., Hsieh, T. F., and Sun, S. K. 2003. Sustainable management of soilborne vegetable crop diseases. Pages 107-119 in: Advances in Plant Disease Management. Huang, H.C. and Acharya, S.N. ed. Research Signpost, Kerala, India. 16. Huang, J. W. 1997. Prospects for use of agricultural wastes for control of crop diseases. In Proceeding of A Symposium on New Techniques of Plant Protection. (Lo, C.T. and Chou, L.Y., ed.), pp. 151-157, Taiwan Agric. Res. Inst. Spec. Publ. No. 57 17. Jenana, R. K. B., Haouala, R., Triki, M. A., Godon, J.-J., Hibar, K. Khedher, M. B., and Henchi, B. 2009. Compost, compost extracts and bacterial suppressive action on Pythium aphanidermatum in tomato. Pak. J. Bot. 41: 315-327. 18. Kao, C. W., and Ko, W. H. 1986. The role of calcium and microorganisms i
摘要: 從台灣各地蒐集二十七個食用菇類菌株,利用Alternaria brassicicola、Colletotrichum higginsianum、Fusarium oxysporum f. sp. lactucae、Phytophthora capsici、Pythium aphanidermatum及Rhizoctonia solani等六種植物病原真菌及Acidovorax avenae subsp. citrulli、Pectobacterium carotovorum subsp. carotovorum、Erwinia chrysanthemi、Ralstonia solanacearum、Xanthomonas oryzae pv. oryzae、X. campestris pv. campestris及X. axonopodis pv. vesicatoria等七種植物病原細菌,評估各食用菇類菌株之培養濾液的抗菌活性,發現這些菇類菌株的培養濾液具有抑制植物病原菌的效果,且抑菌功效會隨菇類菌株的不同而有明顯的差異。參試的菌株中香菇(Lentinula edodes)與紫丁香蘑(Clitocybe nuda)菌株之培養濾液可完全的抑制白菜炭疽病菌(C. higginsianum)的孢子發芽;香菇、紫丁香蘑及靈芝(Ganoderma lucidum) 菌株之培養濾液對十字花科蔬菜黑斑病菌(A. brassicicola)的孢子亦有抑制發芽的效果;香菇、紫丁香蘑、雞腿蘑(Coprinus comatus)及金耳(Tremella aurantialba)等四個菌株之培養濾液則可完全抑制番椒疫病菌(Phytophthora capsici)的游走孢子發芽。惟前述所有培養濾液均無法有效抑制萵苣萎凋病菌(F. oxysporum f. sp. lactucae)的分生孢子發芽;亦無法有效抑制R. solani、P. aphanidermatum、C. higginsianum及F. oxysporum f. sp. lactucae等菌之菌絲生長。至於針對植物病原細菌方面,發現香菇、柳松菇(Agrocybe cylindracea)、靈芝及舞菇(Grifola frondosa) 等四個菌株培養液可顯著抑制細菌性果斑病菌(A. avenae subsp. citrulli)的細胞增殖;柳松菇之培養濾液尚可抑制海芋軟腐細菌(Pectobacterium carotovorum subsp. carotovorum);舞菇、柳松菇與香菇的培養濾液則可抑制蓮霧青枯病菌(R. solanacearum);而香菇、紫丁香蘑及柳松菇的培養濾液尚可抑制水稻白葉枯病菌(X. oryzae pv. oryzae)的生長。洋菇(Agaricus bisporus)、靈芝、香菇、雞腿蘑、舞菇及紫丁香蘑等六種菇類之培養濾液對於十字花科黑腐病菌(X. campestris pv. campestris)與茄科細菌性斑點病(X. axonopodis pv. vesicatoria),分別有不同程度的抑制功效,其中發現紫丁香蘑對多種植物病原菌有明顯抑制效果。進一步,以紫丁香蘑菌絲培養濾液測試抗菌物質之耐熱性與防病功效,紫丁香蘑不同菌株之培養液對於四種植物病原真菌及七種病原細菌的抑制效果,分別具有不同程度的差異,其中以LA82菌株培養液之抑制效果最佳。溫室試驗發現噴佈紫丁香蘑LA82菌株的培養濾液,可有效抑制番椒疫病的發生,對茄科細菌性斑點病也有降低罹病度的效果。進一步發現LA82菌株培養液的抗菌物質對熱及酸鹼值具穩定性。以分子量透析膜評估此抗菌化合物的大小,發現介於100至1000之間,它是一種帶負電且具有親水性之非蛋白質類物質。大量收集LA82菌株培養21天之培養液,經生物檢定(bio-assay)確定具有抑制番椒疫病菌游走孢子發芽之效果後,以減壓濃縮,冷凍保存,再以95%乙醇(v/v)進行粗萃取,並去除大部分糖類,粗萃後樣品再測定其活性後,將粗萃取物以Sephadex LH-20管柱進行層析,以50% (v/v)甲醇水溶液進行沖提,分離出2個沖提物(Fr.1-2),其中Fr2具有抑菌活性,再以矽膠管柱層析法(Silica Gel Chromatography),以不同溶劑比例分別得到8個區分沖提物 (Frs.2.1-8),其中Fr.2-3具有明顯之抑菌活性,進一步由這個沖提區分出1和2號化合物。1號化合物鑑定為2-methoxy-5-methyl-6-methylenemethoxy -p-benzoquinone,其粉末黃色,分子結構式為C10H12O4;2號化合物為黃色油狀,鑑定為6-6’-bis (2H-pyran-3-carbaldehyde) ether,分子結構式為C12H10O5,這二個化合物為首次從紫丁香蘑培養液中發現全新的化合物,可有效防治番椒疫病。 評估五種農業廢棄物、田土及荷蘭泥炭苔(Bas Van Burren No.4 peat moss; BVB)對栽培胡瓜幼苗生育的影響,結果發現BVB最適合胡瓜幼苗生長,但卻無法有效抑制胡瓜猝倒病的發生,然而紫丁香蘑栽培後的廢棄基質(Spent blewit mushroom compost, SBMC)卻具有良好的抑病功效,惟不利於胡瓜幼苗的生長。將BVB與SBMC以不同比例混合後,播種萌芽的胡瓜種子,結果發現兩者以1:1 (v/v)混合對於胡瓜幼苗生長較佳且罹病度較低。此外,若另外添加0.3% (w/v)石灰(lime),則更具有降低罹病度的效果,因此,將BVB與SBMC按1:1 (v/v)混合並添加0.3% (w/v)石灰調製成的栽培基質稱為SBMB。以不同溫度熱處理SBMB,結果發現蒸氣處理不會顯著降低其抑病效果;惟以高溫121℃處理SBMB雖然會提高胡瓜幼苗猝倒病的罹病率由46%上升至56%,結果顯示此部分所喪失的抑病效果係由生物性因子扮演重要角色。換言之,經過高溫121℃滅菌處理,罹病率雖只有56%,但明顯低於對照組的96%,顯示此部分抑病效果係由非生物因子參與。由SBMC分離出細菌、真菌及放線菌等不同的微生物共175株菌株,在PDA平板培養基評估它們對P. aphanidermatum菌絲生長及在螢光玻片上測試對游走孢子發芽的影響,篩選出25株細菌菌株及15株真菌菌株拌入SBMB培養基質3天及10天後,再接種P. aphanidermatum游走孢子及播種萌芽之胡瓜種子,在28℃溫室保濕培養14天,結果發現有7株真菌、1株放線菌及8株細菌可降低胡瓜猝倒病之罹病度達20%左右。將各真菌菌株的DNA以分子生物技術增幅ITS (Internal transcribed spacer)序列,細菌菌株以增幅16S rDNA (16S ribosomal DNA)序列,解序後與NCBI (National Center for Biotechnology Information)基因庫比對鑑定它們的學名外,再逐一以BVB培養諸拮抗菌株的進行評估他們的防病功效,結果發現大部分菌株皆不具抑菌效果,僅有CB13菌株(Bacillus aryabhattai)、B34菌株(Bacillus subtilis)及PCA3菌株(Streptomyces sp.)仍可降低胡瓜猝倒病之罹病度30%左右,尤其以CB13菌株效果最佳。因此,本研究採用SBMB栽培基質混拌CB13 (B. aryabhattai)菌株後製成生物調製介質(bioformulated medium),可有效降低胡瓜幼苗猝倒病的發生,並促進植株的生長。此外,本研究也發現以95% (v/v)乙醇萃取SBMC基質,結果發現其乙醇萃取物具有抑制P. aphanidermatum游走孢子的發芽效果,而SBMB栽培基質抑制胡瓜猝倒病發生的另一原理,係來自SBMC基質內的抑菌物質;進一步以高壓液相層析儀(high performance liquid chromatography, HPLC)進行純化分析SBMC的抑菌物質,在23.1分鐘圖譜出現一支吸收波峰(peak)與紫丁香蘑LA82菌株之PDB培養液在相同條件下相仿。紫丁香蘑LA82菌株之PDB培養液的乙醇萃取物在1000 ppm對P. aphanidermatum和P. capsici二種病原菌的游走孢子均具有強烈的抑制發芽效果;此外,本研究也發現這抑制P. aphanidermatum游走孢子發芽的效果會隨SBMC基質的含量減少而逐漸下降。有關SBMC的抑病物質與其在HPLC所出現的波峰是否有相關性,則有待進一步研究的分析。 綜合本研究的成果,證明食用菇類的二次代謝物具有許多防治植物病害的活性成分,頗具有研發成為安全農業植物保護製劑的潛力。栽培紫丁香蘑菇後的廢棄堆肥,以本研究方法調製後,具有促進植物的生長及顯著降低土壤傳播病害的效果;本研究證明在紫丁香蘑的廢棄堆肥加入生防菌如B. aryabhattai等菌株,則可成功開發優異的抑病介質,不僅可防治胡瓜幼苗猝倒病,尚可提高植株生長勢。此外,也可解決菇類栽培後的廢棄物處理問題。
The cultural filtrates of 27 edible mushrooms were screened for antimicrobial activity against the following plant pathogens: Colletotrichum higginsianum, Fusarium oxysporum f. sp. lactucae, Pythium aphanidermatum, Phytophthora capsici, Rhizoctonia solani, Acidovorax avenae subsp. citrulli, Pectobacterium carotovorum subsp. carotovorum, Erwinia chrysanthemi, Ralstonia solanacearum, Xanthomonas axonopodis pv. vesicatoria, Xanthomonas campestris pv. campestris and Xanthomonas oryzae pv. oryzae. The culture filtrates of Lentinula edodes and Clitocybe nuda were able to completely inhibit conidial germination of C. higginsianum. Three samples contained substances that had the capacity to completely inhibit conidial germination of A. brassicicola were Ganoderma lucidum, L. edodes and C. nuda. The culture filtrates of Coprinus comatus, L. edodes, Tremella aurantialba and C. nuda showed complete suppression of spore germination of P. capsici. Only the culture filtrate of C. nuda moderately inhibited spore germination of F. oxysporum f. sp. lactucae. The paper-disc agar-diffusion method was used to test the effect of mushroom culture filtrates on the growth of plant pathogenic bacteria. Four culture filtrates strongly inhibited the growth of A. avenae subsp. citrulli. Only the culture filtrate of Agrocybe cylindracea showed a clear inhibition zone against P. carotovorum subsp. carotovorum. The culture filtrates of A. cylindracea, Grifola frondosa and L. edodes showed various sizes of growth inhibition zones against R. solanacearum. None of the culture filtrates were able to inhibit mycelial growth of C. higginsianum, R. solani, P. aphanidermatum, and F. oxysporum f. sp. lactucae. The culture filtrates of L. edodes and C. nuda showed the strongest inhibitory effects against X. campestris pv. campestris. The culture filtrate of C. nuda strongly inhibited certain plant pathogenic fungi and bacteria. The culture filtrates of five strains of C. nuda displayed various degrees of antimicrobial activity against the plant pathogenic fungi and/or bacteria tested. The culture filtrate of C. nuda strain LA82 very effectively reduced the disease incidence of Phytophthora blight of pepper, which is caused by P. capsici, and the leaf spot of pepper, which is caused by X. axonopodis pv. vesicatoria. The inhibitory substance in the C. nuda strain LA82 culture filtrate was stable at low and high pH values and at high temperatures. The inhibitory substance was dialyzable in membrane tubing with a molecular weight cut-off of 1000 but not of 500 or 100. The substance was also exchangeable by anion but not cation exchange resins, indicating that the inhibitor has a molecular weight between 1000 and 100 and is negatively charged. The inhibitor is a hydrophilic compound but is not a protein. Approximately 2 L of 21-day-old culture filtrates of C. nuda strain LA82 was concentrated under a vacuum to yield a 10-gram residue. After the residue was extracted with 95% (v/v) ethanol, the resulting extract showed antifungal activity. This ethanol extract was concentrated under a vacuum to give a residue. The crude extract was chromatographically separated on a Sephadex LH-20 column and eluted with 50% (v/v) methanol in water in two fractions (Frs.1-2). Fr.2, which showed significant activity, was chromatographically separated on a silica gel column with n-hexane-acetone (2:1, v/v) to generate eight subfractions (Frs.2.1-8). Fr.2-3, which showed strong antifungal activity, was further purified by silica gel column chromatography and identified as two compounds by one-dimensional (1H NMR, 13C NMR) and two-dimentional (HMQC, HMBC) nuclear magnetic resonance and Mass spectral methods. Compound 1, 2-methoxy-5-methyl-6-methylenemethoxy-p-benzoquinone, was a yellow powder with a molecular formula of C10H12O4. Compound 2, 6-6'-bis (2H-pyran-3-carbaldehyde) ether, was a yellow oil with a molecular formula of C12H10O5. The two compounds have not been reported prior to this study. Seven culture substrates were tested for their ability to support the growth of cucumber seedlings. BVB No. 4 peat moss was more suitable than other agricultural substrates, but it was innocuous to P. aphanidermatum. Spent blewit mushroom compost (SBMC) was the most effective substrate for the suppression of Pythium damping-off in cucumber. Mixing SBMC with BVB at a ratio of 1:1 (v/v) was suitable for the growth of cucumber and was capable of reducing the incidence of Pythium damping-off in cucumber. A new container medium (SBMB) was formulated using SBMC, BVB and lime. The SBMB medium was suitable for the growth of cucumber and suppression of P. aphanidermatum. The suppressive effect of the SBMB medium on damping-off of cucumber seedlings caused by P. aphanidermatum was not reduced after it was treated with steam at 100℃ for 30 min. The disease incidence of cucumber seedlings in autoclaved SBMB increased from 42% to 56%, indicating the involvement of the biotic factor in the suppressiveness of SBMB. The decrease of disease incidence from 96% in the control to 56% in autoclaved SBMB also shows that importance of abiotic factor in the suppressing effect of SBMB. Isolated microorganisms from the SBMC medium were tested for antagonistic activity against P. aphanidermatum. Seven isolated fungi showed suppressive effects against P. aphanidermatum, and internal transcribed spacer (ITS) sequencing showed that two such fungi were Aspergillus fumigatus and Schizophyllum commune. One actinomyce and eight isolated bacteria also showed inhibitory effects against P. aphanidermatum, and the 16S rDNA sequence analysis showed that Streptomyces sp., Bacillus aryabhattai and Bacillus subtilis had the highest inhibition capacities. The bioformulated container medium formulated by using SBMB inoculated with B. aryabhattai very effectively reduced the disease incidence of Pythium damping-off in cucumber and enhanced the growth of crops. Results of this study suggest that a combination of biotic and abiotic factors is responsible for the suppressing effect of the bioformulated container medium. The majort abiotic factors of inhibitory activity of the SBMB medium against P. aphanidermatum originated from the SBMC component because it was able to moderately inhibit this organism. The ethanol extract of the SBMC medium inhibited zoospore germination of P. aphanidermatum. High pressure liquid chromatography (HPLC) analysis of the inhibitory substances in the SBMC medium showed the presence of a peak at the retention time of 23.1 min, the same as PDB culture filtrate of C. nuda strain LA82. The culture filtrate of C. nuda strain LA82 also showed strong inhibition against the zoospore germination of P. aphanidermatum. The SBMB medium developed in this study for the control of Pythium damping-off of cucumber is environmentally friendly and has the potential to be developed into a commercial product.
URI: http://hdl.handle.net/11455/31486
其他識別: U0005-2701201118012400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2701201118012400
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.