Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31489
標題: 利用病毒唑化學治療生產無病毒之蝴蝶蘭組培苗暨多對引子反轉錄聚合酶連鎖反應檢測辣椒黃化病毒及蝴蝶蘭黃化斑點病毒
In vitro production of virus-free Phalaenopsis orchids through chemotherapy of ribavirin and multiplex RT-PCR detection of Capsicum chlorosis virus and Phalaenopsis chlorotic spot virus
作者: 李品臻
Li, Ping-Chen
關鍵字: Phalaenopsis orchid-infecting viruses
去病毒
virus-free
RT-PCR
反轉錄聚合酶連鎖反應
出版社: 植物病理學系所
引用: 米田和夫。2007。蝴蝶蘭。興大農業推廣叢書。國立中興大學農業推廣中心。P6-8。 林益德。2005。可同時偵測齒舌蘭輪斑病毒及蕙蘭嵌紋病毒之多株抗體之研發及應用。碩士論文。朝陽科技大學生物技術研究所。台中。 邱智煌。2006。可分解齒舌蘭輪斑及蕙蘭嵌紋病毒鞘蛋白並摧毀其感染力之放線菌蛋白酶之篩選與應用。碩士論文。朝陽科技大學生物技術研究所。台中。 黃詩婷。2008。利用磁顆粒分離技術檢測六種感染蝴蝶蘭病毒之研究。碩士論文。高雄師範大學生物科技系。高雄。 張清安。2005。蘭花病毒病。行政院農業委員會動植物防疫檢疫局出版。台北市。P17-27。 臺灣總督府殖產局。2008。台灣農業年報。臺灣總督府殖產局。P18 謝瑞旻、陳金枝、林益賢、陳文輝、張清安。2003。蝴蝶蘭分生組織培養苗去病毒技術之建立。臺灣糖業研究所研究彙報。179:39-47。 Albouy, J., Flouzat, C., Kusiak, C., and Tronchet, M. 1988. Eredication of orchid viruses by chemotherapy from in-vitro cultures of cymbidium. Acta. Hortic. 234:413-420. Arunasalam, G., and Pearson, M. N. 1989. ELISA detection of odontoglossum ringspot virus in mature plants and protocorms of Cymbidium orchids: Potential solutions to problems of sample preparation time and low virus concentration. J. Phytopathol. 126:160-166. Baker, C. A., Davison, D., and Jones, L. 2007. Impatiens necrotic spot virus and Tomato spotted wilt virus diagnosed in Phalaenopsis orchids from two Florida nurseries. Plant Dis. 91:1515. Barry, K., Hu, J. S., Kuehnle, A. R., and Sughii, N. 1996. Sequence analysis and detection using immunocapture-PCR of cymbidium mosaic virus and odontoglossum ringspot virus in Hawaiian orchids. J. Phytopathol. 144:179-186. Cameron, C. E. C., and Castro, C. 2001. The mechanism of action of ribavirin: lethal mutagenesis of RNA virus genomes mediated by the viral RNA-dependent RNA polymerase. Curr. Opin. Infect. Dis. 14:757-764. Chang, M. U., Arai, K., Doi, Y., and Yora, K. 1976. Morphology and intracellular appearance of orchid fleck virus. Ann. Phytopathol. Soc. Jpn. 42:156-157. Chen, F. C., Yu, J. Y., Chen, P. Y., and Huang, Y. W. 2008. Somaclonal variation in orchid and the application in orchids and the application of biotechnology. Acta Hortic. 766:315-322. Chen, J. T., and Chang, W. C. 2006. Direct somatic embryogenesis and plant regeneration from leaf explants of Phalaenopsis amabilis. Biol. Plant. 50:169-173. Clark, M. F., and Adams, A. N. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34:475-483. De Clercq, E. 2001. Molecular targets for antiviral agents. J. Pharmacol. Exp. Ther. 297:1-10. De Clercq, E. 2004. Antivirals and antiviral strategies. Nat. Rev. 2:704-720. Eun, A. J. C., Huang, L., Chew, F. T., Li, S. F. Y., and Wong, S. M. 2002. Detection of two orchid viruses using quartz crystal microbalance (QCM) immunosensors. J. Virol. Methods 99:71-79. Eun A. J. C., Seoh, M. L., and Wong, S. M. 2000. Simultaneous quantita two orchid virus by the TaqMan real-time RT-PCR. J. Virol. Methods. 87:151-160. Eun, A. J. C., and Wong, S. M. 1999. Detection of cymbidium mosaic potexvirus and odontoglossum rigspot tobamovirus using immuno-capillary zone electrophoresis. Phytopathology 89:522-528. Francki, R. I. B. 1970. Cymbidium Mosaic Virus. CMI/AAB Descriptions of Plant Viruses No. 27. Frowd, J. A., and Tremaine, J. H. 1977. Physical, chemical, and serological properties of cymbidium mosaic virus. Phytopathology 67:43-49. Fukuta, S., Kato, S., Yoshida, K., Mizukami, Y., Ishida, A., Ueda, J., Kanbe, M., and Ishimoto, Y. 2003. Detection of Cymbidium mosaic virus by reverse transcription loop-mediated isothermal amplification reaction (RTLAMP). Jpn. J. Phytopathol. 69:411-414. Hansen, A. J. 1989. Antiviral chemicals for plant disease control. Crit. Rev. Plant Sci. 8:45-81. Hansen, A. J., and Lane, W. D. 1985. Elimination of apple chlorotic leafspot virus f rom apple shoot cultures by ribavirin. Plant Dis. 69:134-137. Hernández, P. R. 2000. "Electrotherapy" technique eliminates viral and bacterial infections. Rev. Agricell Report 34:9-10. Hu, W. W., and Wong, S. M. 1998. The use of DIG labelled cRNA probes for the detection of cymbidium mosaic potexvirus (CymMV) and odontoglossum ringspot tobamovirus (ORSV) in orchids. J. Virol. Methods 70:193-199. Inouye, N. 1969. Cucumber mosaic virus isolated from Dendrobium. Agric. Res. 53:49-60. Inouye, N. 1973. A new virus isolated from Dendrobium. Ann. Phytopathol. Soc. Jpn. 39:367-368. Inouye, N. 1983. Host range and properties of a strain of Odontoglossum ringspot virus in Jpn. Nogaku Kenkyu 60:53-67. Jan, F. J., Fagoaga, C., Pang, S. Z., and Gonsalves, D. 2000. A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J. Gen. Virol. 81:2103-2109. Jensen, D. D. 1951. Mosaic black streak disease of cymbidium orchids. Phytopathology 41:401-414. Jensen, D. D., and Gold, H. A. 1951. A virus ring spot of Odontoglossum orchid : symptoms, transmission and electron microscopy. Phytopathology 41:648-653. Kandan, A., Radjacommare, R., Nandakumar, R., Raguchander, T., Ramiah, M., and Samiyappan, R. 2002. Induction of phenylpropanoid metabolism by Pseudomonas fluorescens against tomato spotted wilt virus in tomato. Folia Microbiol. 47:121-129. Kim, M. S., Lee, Y. R., Song, C. H., Kim, B. H., Kyun, S. B., and Eun, J. S. 1997. Eliminaion of Odontoglossum ringspot virus from Cymbidium spp. by chemotherapy and thermotherapy. RDA J. Agric. Sci. Crop Prot. 39:19-24. Ko, N. J. 1988. Cytological identification of Cucumber mosaic virus infecting Phalaenopsis. Proc. Natl. Sci. Counc. B. R. O. C. 12:46-51. Lawson, R. H., and Hsu, H. T. 1995. Orchid. P 409-420 in: Virus and Virus-like Diseases of Bulb and Flower Crops. G. Loebenstein, R. H. Lawson, and A. A. Brunt (eds), John Wiley &Sons, West Sussex, United Kingdom. Lee, S. C., and Chang, Y. C. 2006. Multiplex RT-PCR detection of two orchid viruses with an internal control of plant nad5 mRNA. Plant Pathol. Bull. 15:187-196. Lesemann, D. E. 1977. Long, filamentous virus-like particles associated with vein necrosis of Dendrobium phalaenopsis. Phytopathol. Z. 71:257-269. Lim, S. T., Wong, S. M., and Goh, C. J. 1993. Elimination of cymbidium mosaic virus and odontoglossum ringspot virus from orchids by meristem culture and thin section culture with chemotherapy. Ann. Appl. Biol. 122:289-297. Lin, T. P. 1988. Native Orchids of Taiwan. Southern Materials Center, Taiwan, ROC, P355. Liu, Z. L., Han, F. P., Tan, M., Shan, X. H., Dong, Y. Z., Wang, X. Z., Fedak, G., Hao, S., and Liu, B. 2004. Activation of a rice endogenous retrotransposon Tos17 in tissue culture is accompanied by cytosine demethylation and causes heritable alteration in methylation pattern of flanking genomic regions. Theor. Appl. Genet. 109:200-209. Martín-Hernández, A. M., and Baulcombe, D. C. 2008. Tobacco rattle virus 16-kilodalton protein encodes a suppressor of RNA silencing that allows transient viral entry in meristems. J. Virol. 82:4064-4071. Maurhofer, M., Hase, C., Meuwly, P., Metraux, J.P., Defago, G. 1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root colonizing Pseudomonas fluorescens strain CHAO: Influence of the gacA gene and of pyoverdine production. Phytopathology 84:139-146. Mochizuki, T., and Ohki, S. T. 2004. Shoot meristem tissue of tobacco inoculated with Cucumber mosaic virus is infected with the virus and subsequently recovers from infection by RNA silencing. J. Gen. Plant Pathol. 70:363-366. Morel, G. 1960. Producing virus-free cymbidiums. Am. Orchid. Soc. Bull. 29:495-597. Murphy, J. F., Sehnder, G. W., Schuster, D. J., Sikora, E. J., Polston, J. E., and Kloepper, J. W. 2000. Plant growth-promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Dis. 84:779-784. Napoli, C., Lemieux, C., and Jorgensen, R. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279-289. Nesi, B., Trinchello, D., Lazzereschi, S., Grassotti, A., and Ruffoni, B. 2009. Production of lily symptomless virus-free plants by shoot meristem tip culture and in vitro thermotherapy. HortScience 44:217-219. Panattoni, A., D''Anna, F., Cristani, C., and Triolo, E. 2007. Grapevine vitivirus A eradication in Vitis vinifera explants by antiviral drugs and thermotherapy. J. Virol. Methods 146:129-135. Porter, K. G., and Kuehnle, A. R. 1997. Using dithiouracil and ribavirin to eliminate cymbidium mosaic virus during micropropagation of ‘Uniwai Mist’ dendrobium orchid. HortTechnology 7:161-164. Previati, A., Benelli, C., Da Re, F., and Giannini, M. 2008. In vitro production of virus-free chrysanthemum stock plants for cut flowers. Propag. Ornam. Plants 8:167-169. Raupach, G. S., Liu, L., Murphy, J. F., Tuzun, S., and Kloepper, J. W. 1996. Induced resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growth promoting rhizobacteria. Plant Dis. 80:891-894. Ryu, K. H., and Park, W. M. 1995. Rapid detection and identification of odontoglossum ringspot virus by polymerase chain reaction amplification. FEMS Microbiol. Lett. 133:265-269. Sanchez-Navarro, J. A., Aparicio, F., Herranz, M. C., Minafra, A., Myrta, A., and Pallas, V. 2005. Simultaneous detection and identification of eight stone fruit viruses by one-step RT-PCR. Eur. J. Plant Pathol. 111:77-84. Seoh, M. L., Wong, S. M., and Zhang, L. 1998. Simultaneous TD/RT-PCR detection of cymbidium mosaic potexvirus and odontoglossum ringspot tobamovirus with a single pair of primers. J. Virol. Methods 72:197-204. Sidwell, R. W., Huffman, J. H., Khare, G. P., Allen, L. B., Witkowski, J. T., and Robins, R. K. 1972. Broad-spectrum antiviral activity of virazole:1-β-D-ribofuranosyl-1,2,4 triazole-3-carboxamide. Science 177:705-706. Stone, O. M. 1982. The elimination of four viruses from Ullucus tuberose by meristem-tip culture and chemotherapy. Ann. Appl. Biol. 101:79-83 Streeter, D. G., Witkowski, J. T., Khare G. P., Sidwell, R. W., Bauer, R. J., Robins, R. K., and Simon, L. N. 1973. Mechanism of action of 1-β-D-ribofuranosyl-1,2,4 triazole-3-carboxamide (virazole), a new broad spectrum antiviral agent. Proc. Natl. Acad. Sci. USA 70:1174-1178. Tan, S. W. L., Wong, S. M., and Kini, R. M. 2000. Rapid simultaneous detection of two orchid viruses using LC- and/or MALDI-mass spectrometry. J. Virol. Methods 85:93-99. Tanaka, S., Nishii, H., Ito, S., Kameya-Iwaki, M., and Sommartya, P. 1997. Detection of Cymbidium mosaic potexvirus and Odontoglossum ringspot tobamovirus from Thai orchids by rapid immunofilter paper assay. Plant Dis. 81:167-170. Toussaint, A., Dekegel, D., and Van Heule, G. 1984. Distribution of Odontoglossum ringspot virus in apical meristems of infected Cymbidium cultivars. Physiol. Plant Pathol. 25:297-305. Toussaint, A., and Kummert, J. 1986. Essais d''éradication du virus des anneaux nécrotiques del ''Odontoglossum chez Cymbidium Sw. par culture in vitro en présence de Virazole. Revue de l''Agriculture 2:407-414. Toussaint, A., Kummert, J., Maroquin, C., Lebrun, A., and Roggemans, J. 1993. Use of VIRZOLE to eradicate Odontoglossum ringspot virus from in vitro cultures of Cymbidium Sw. Plant Cell Tissue Organ Cult. 32:303-309. Verma, N., Ram, R., and Zaidi, A. A. 2005. In vitro production of Prunus necrotic ringspot virus-free begonias through chemo- and thermotherapy. Sci. Hortic. 103:239-247. Tsuda, S., Kameya-Iwaki, M., Hanada, K., Fujisawa, I., and Tomaru, K. 1993. Simultaneously diagnosis for plants infected with multiple viruses employing rapid immunofilter paper assay (RIPA) with two step method; Multi-RIPA. Ann. Phytopathol. Soc. Jpn. 59:200-203. Wey, G. C. 1988. Occrrence and investigation of important diseases on Phalaenopsis in Taiwan. Rep. Taiwan Sugar Res. Inst. 122:31-41. Wong, S. M., and Chng, C. G. 1993. Evaluation of sample processing methods in detecting cymbidium mosaic virus in orchids using indirect ELISA. Int. J. Trop. Plant Dis. 11:139-145. Zettler, F. W., Ko, N. J., Wisler, G. C., Elliott, M. S., and Wong, S. M. 1990. Viruses of orchids and their control. Plant Dis. 74:621-625. Zehnder, G. W., Yao, C., Murphy, J. F., Sokora, S .R., Kloepper, J. W., Schuster, D. J., and Polston, J. E. 1999. Microbe induced resistance against pathogens and herbivores: Evidence of effectiveness in agriculture. In: Agrawal, A.A., Tuzun, S., Bent, E. (eds) Induced plant defenses against pathogens and herbivores: Biochemistry, ecology and agriculture. St. Paul, MN: American Phytopathological Society. P 335-355. Zheng, Y. X. 2007. Identification and characterization of new Phalaenopsis orchid-infecting viruses and developing new transgenic approach for broad-spectrum resistance to viruses by expressing designed siRNA-generating synthetic nucleotides. PhD Thesis, Departmnt of Plant Pathology, National Chung Hsing University, Taiwan. Zheng, Y. X., Chen, C. C., Chen, Y. K., and Jan, F. J. 2008a. Identification and characterization of a potyvirus causing chlorotic spots on Phalaenopsis orchids. Eur. J. Plant Pathol. 121:87-95. Zheng, Y. X., Chen, C. C., and Jan, F. J. 2008b. Phalaenopsis orchids showing chlorotic rings, a new disease caused by Carnation mottle virus. J. Plant Pathol. 90:192 (S2). Zheng, Y. X., Chen, C. C., Yang, C. J., Yeh, S. D., and Jan, F. J. 2008c. Identification and characterization of a tospovirus causing chlorotic ringspots on Phalaenopsis orchids. Eur. J. Plant Pathol. 120:199-209. Zheng, Y. X., Shen, B. N., Chen, C. C., and Jan, F. J. 2010. Odontoglossum ringspot virus causing flower crinkle in Phalaenopsis hybrids. Eur. J. Plant Pathol. (In press, DOI: 10.1007/s10658-010-9630-0)
摘要: 蘭花是台灣重要之花卉作物之一,其繁殖多仰賴分生組織培養技術,因病毒易經由組織培養傳播而感染蘭花,故病毒病害成為蘭花生產過程中最重要的限制因子。本研究主要為建立蝴蝶蘭擬原球體(protocorm-like bodies, PLBs)增殖階段添加病毒抑制劑ribavirin之去病毒技術(virus elimination technique),以及建立蝴蝶蘭新興病毒之檢測技術。將感染病毒之蝴蝶蘭病株以花梗誘導定芽及增殖,再以小芽葉片誘導產生擬原球體,測試單獨於液態培養基中添加 ribavirin 及之後持續於固態培養基進行 ribavirin 處理之去病毒效果。試驗結果發現 ribavirin 濃度愈高,去病毒率亦愈高,但擬原球體存活率卻越低且易出現變異;此外,擬原球體所感染之病毒種類與蝴蝶蘭品系皆會影響去病毒效率,ELISA 檢測結果顯示擬原球體於液態培養基處理 ribavirin 後持續再於固態培養基進行處理可以提升去病毒率。感染 Odontoglossum ringspot virus (ORSV) 之 Phal. Taisuco Grace 持續以 ribavirin 處理可以獲得 72.73~81.82% ELISA 檢測為陰性之擬原球體;感染 Cymbidium mosaic virus (CymMV) 之 Phal. aphrodite subsp. formosana 持續處理 ribavirin 可以獲得 69.23~80.00% ELISA 檢測為陰性之擬原球體,而感染 Cucumber mosaic virus (CMV) 之 Phal. aphrodite subsp. formosana 則可獲得 45.45~85.71% ELISA 檢測為陰性之擬原球體。以反轉錄聚合酶連鎖反應 (Reverse transcription-polymerase chain reaction; RT-PCR) 檢測單獨於液態培養基處理 ribavirin 後增殖之小苗,感染 ORSV 之 Phal. Taisuco Grace 於 50 ppm ribavirin 處理後可獲得 13.33% 無病毒苗株,25 ppm ribavirin 之處理可獲得 9.09% 無病毒苗株;感染 CymMV 之 Phal. aphrodite subsp. formosana 經 50 ppm ribavirin 處理後可獲得100%無病毒苗株,25ppm ribavirin之處理可獲得83.33%無病毒苗株,ELISA檢測約有5.91~16.67%之植株呈現偽陰性。感染ORSV之Phal. Taisuco Grace 經 ribavirin 處理後,擬原球體(50 ppm: 35.00%, 25 ppm: 33.33%) 以 ELISA 檢測為陰性之比例高於小苗(50 ppm: 25.00%, 25 ppm: 15.00%),顯示病毒感染擬原球體後有潛伏期,在擬原球體分化為小苗過程中,病毒慢慢繁殖累積並且逐漸系統性的分佈到小苗全身組織中;而受CymMV感染之擬原球體以ELISA檢測為陰性之比例較感染ORSV者高,顯示CymMV在擬原球體階段之累積量低,之後隨著新生組織之增殖,CymMV似乎較ORSV不利於在擬原球體細胞間移行,所以獲得無病毒之擬原球體比例較高(61.90,53.33%);不添加藥劑之對照組也可獲得無病毒苗株,顯示亦有少量新生組織(20~30%)可自然躲避病毒感染。本研究所建立之蝴蝶蘭擬原球體以ribavirin處理之去病毒策略可以成功去除CymMV、ORSV及CMV,此策略未來可應用於去除其他蝴蝶蘭病毒,如Capsicum chlorosis virus (CaCV-Ph)及Palaenopsis chlorotic spot virus (PhCSV)。除了研發蝴蝶蘭去病毒技術,另外亦建立可同時檢測蝴蝶蘭新興病毒CaCV-Ph與PhCSV之多重反轉錄聚合酶連鎖反應(multiplex RT-PCR)檢測系統,所使用之CaCV-Ph(FJJ2008-17/FJJ2008-18)及PhCSV(FJJ2008-31/FJJ2008-32)引子不論在單對引子或是多對引子RT-PCR中,皆可穩定增幅出預期條帶且具高度專一性,未來此技術可以運用在同時檢測多種蘭花病毒,提供快速且全面性之病毒篩檢,以維護我國蝴蝶蘭健康種苗生產系統之品質,並結合去病毒技術以建立更完善之蝴蝶蘭健康種苗體系。
Orchid is an important economic ornamental in Taiwan and often infected by viruses via the propagation of tissue cultures. Therefore, virus diseases are the major limiting factor of orchid production. The objectives of this study are to develop 1) a technique to eliminate viruses from the Phalaenopsis protocorm-like bodies (PLBs) using ribavirin treatments and 2) a detection method for new Phalaenopsis-infecting viruses using reverse transcription-polymerase chain reaction (RT-PCR). PLBs, which were induced from the leaves of the virus-infected explants that regenerated from the buds of Phalaenopsis stalks, were treated first with ribavirin only in the liquid medium and then kept on the solid medium supplemented with or without ribavirin. The viruse elimination rate from PLBs was positively correlated to the concentrations of ribavirin. However, the PLBs treated with higher concentration of ribavirin resulted in lower survival ratio with unusual variations. The elimination rates varied based on the Phalaenopsis-infecting viruses and the Phalaenopsis cultivars. The ELISA results indicated that higher elimination rates were obtained when the virus-infected PLBs were cultured in the liquid medium with ribavirin and then maintained on solid medium supplemented with ribaririn. About 72.73~81.82% of PLBs of Phal. Taisuco Grace infected by Odontoglossum ringspot virus (ORSV) were virus-free after ribavirin treatment both in liquid and solid medium based on ELISA results. After the same treatments and ELISA tests, about 69.23~80.00% or 45.45~85.71% of the PLBs of Phal. aphrodite subsp. formosana with Cymbidium mosaic virus (CymMV) or Cucumber mosaic virus (CMV) were virus-free, respectively. Based on the reverse transcription-polymerase chain reaction (RT-PCR) results, 13.33% and 9.09% of the plantlets regenerating from ORSV-infected PLBs were ORSV free after being treated with ribavirin in the liquid medium only at 50 and 25 ppm, respectively, while 100% (treated at 50 ppm) and 83.33% (treated at 25 ppm) of those from CymMV-infected PLBs were CymMV free. After being confirmed with RT-PCR, it was clear that there were 5.91~16.67% of the plantlets that were falsely identified as negative in ELISA tests. In the study of ORSV elimination from Phal. Taisuco Grace, the ELISA negative ratio from the treated PLBs (35.00% when treated at 50 ppm and 33.33% at 25 ppm) was higher than that of plantlets (25.00% at 50 ppm and 15.00% at 25 ppm). This may indicate that the titer of ORSV in plantlets were higher than that in PLBs, because ORSV had a latent period after infection in the PLBs and multiplied and accumulated slowly in the regenerated plantlets during the regeneration process. The ELISA negative ratio in the PLBs from CymMV-infected Phal. aphrodite subsp. formosana was higher than that in ORSV-infected PLBs. It seemed to suggest that the titer of CymMV in the PLBs was lower. A possible explanation for having more CymMV-free PLBs than ORSV-free PLBs was that CymMV moved not as readily in the PLBs as ORSV. There were 20-30% virus-free plantlets regenerated from the virus-infected PLBs that received no ribavirin treatment indicating the escape of virus infection during regeneration. The ribavirin treatment strategies used in this study are useful for the elimination of CymMV, ORSV and CMV, and can be tried for the elimination of Capsicum chlorosis virus (CaCV-Ph) and Palaenopsis chlorotic spot virus (PhCSV) in the future. In addition to the study of the strategies for virus elimination, the multiplex RT-PCR of CaCV-Ph and PhCSV was developed for virus detection. The amplification was stable and specific when using the primers of CaCV-Ph (FJJ2008-17/FJJ2008-18) and PhCSV (FJJ2008-31/FJJ2008-32) in the simplex and multiplex RT-PCR. The detection method developed in this study could be useful for the detection of multiple orchid viruses. The combination of the virus elimination system and the multiplex RT-PCR detection protocol will definitely help improve the quality of the orchid production especially in the industry of producing healthy orchid seedlings in Taiwan.
URI: http://hdl.handle.net/11455/31489
其他識別: U0005-2707201018184200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2707201018184200
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.