Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31494
標題: 番茄斑點萎凋病毒及鳳仙花壞疽斑點病毒非結構 性 NSs 蛋白多元和單元抗體之製備及其應用
Preparation and Application of Polyclonal and Monoclonal Antibodies against the Nonstructural NSs Proteins of Tomato spotted wilt virus and Impatiens necrotic spot virus
作者: 蔡偉婷
Tsai, Wei-Ting
關鍵字: 番茄斑點萎凋病毒
Tomato spotted wilt virus (TSWV)
鳳仙花壞疽斑點病毒
非結構性蛋白
多元抗體
單元抗體
Impatiens necrotic spot virus (INSV)
nonstructural NSs protein
polyclonal antibody (PAb)
monoclonal antibody (MAb)
出版社: 植物病理學系所
引用: 王清玲。2002。台灣薊馬生態與種類:纓翅目錐尾亞目。農業試驗所特刊第99 號。328 頁。行政院農業委員會農業試驗所 編印。臺中。 Adam, G., Roggero, P., Malavasif, R., Milne, G., and Papa, G. 1995a. Approach to a general tospovirus assay using antibodies to purified tomato spotted wilt tospovirus G proteins. EPPO Bull. 25:247-257. Adam, G., Peters, D., and Goldbach, R. 1995b. Serological comparison of Tospovirus isolates using polyclonal and monoclonal antibodies. Acta Hort. 431:135-158. Adkins, S. 2000. Tomato spotted wilt virus - positive steps towards negative success. Mol. Plant Pathol. 1:151-157. Bezerra, I. C., Resende, R. de O., Pozzer, L., Nagata, T., Kormelink, R., and de Avila, A. C. 1999. Increase of tospoviral diversity in Brazil with the identification of two new tospovirus species, one from chrysanthemum and one from zucchini. Phytopathology 89:823-830. Bridgen, A., Weber, F., Fazakerley, J. K., and Elliott, R. M. 2001. Buynyamwera bunyavirus nonstructural protein, NSs is a nonessential gene product that contributes to viral pathogenesis. Proc. Natl. Acad. Sci. USA 98:664-669. Brittlebank, C. C. 1919. Tomato disease. J. Agric. Victoria 17:213-235. Bucher, E., Sijen, T., de Haan, P., Goldbach, R., and Prins, M. 2003. Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at ananlogous genomic positions. J. Virol. 77:1329-1336. Chen, C. C., Chen, T. C., Lin, Y. H., Yeh, S. D., and Hsu, H. T. 2005a. A chlorotic spot disease on calla lilies (Zantedeschia spp.) is caused by a tospovirus serologically but distantly related to Watermelon silver mottle virus. Plant Dis. 89:440-445. Chen, C. C., Huang, C. H., Chen, T. C., Yeh, S. D., Cheng, Y. H., Hsu, H. T., and Chang, C. A. 2007. First report of Capsicum chlorosis virus caused yellowing stripes on calla lilies. Plant Dis. 91:1201. Chen, C. C., Shy, J. F., and Yeh, S. D. 1990. Thrips transmission of Tomato spotted wilt virus from watermelon. Plant Prot. Bull. 32:331-332. Chen, T. C., Huang, C. W., Kuo, Y. W., Liu, F. L., Hsuan Yuan, C. H., Hsu, H. T., and Yeh, S. D. 2006. Identification of common epitopes on a conserved region of NSs proteins among tospoviruses of Watermelon silver mottle virus serogroup. Phytopathology 96:1296-1304. Chen, T. C., Huang, C. W., Liu, F. L., Hsu, H. T., Jain, R. K., Lin, C. H., and Yeh, S. D. 2005b. Purification and serological analyses of tospoviral nucleocapsid proteins expressed by Zucchini yellow mosaic virus vector. J. Virol. Methods 129:113-124. Chen, T. C., Lu, Y. Y., Cheng, Y. H., Chang, C. A., and Yeh, S. D. 2008. Melon yellow spot virus in watermelon: a first record from Taiwan. Plant Pathol. 57:765. Chen, T. C., Lu, Y. Y., Cheng, Y. H., Li, J. T., Yeh, Y. C., Kang, Y. C., Chang, C. P., Li, H. H., Pang. J. C., and Yeh, S. D. 2010. Serological relationship between Melon yellow spot virus and Watermelon silver mottle virus and differential detection of the two viruses in cucurbits. Arch. Virol. doi: 10.1007/s00705-010-0688-y. Cheng, X. F., Dong, J. H., Fang, Q., Li, T. T., Ding, M., Zhang Z. K. 2008. Detection the tospovirus from Phalaenopsis in Yunnan. Arch. Plant Pathol. 38:31-34. (in Chinese). Chiemsombat, P., and Adkins, S. 2006. Tospoviruses. In: Rao, G.P., Kumar, P.L., Holguin-Pena, R.J. (Eds.), Characterization, Diagnosis and Management of Plant Viruses, Vol. 3: Vegetable and Pulse Crops. InStudium Press, Texas, USA. p. 1-37. Chu, F. H., and Yeh, S. D. 1998. Comparison of replication forms and ambisense M RNA of Watermelon silver mottle virus with other tospoviruses. Phytopathology 88:351-358. Chu, F. H., Chao, C. H., Chung, M. H., Chen, C. C., and Yeh, S. D. 2001a. Completion of the genome sequence of Watermelon silver mottle virus and utilization of degenerate primers for detecting tospoviruses in five serogroups. Phytopathology 91:361-368. Chu, F. H., Chao, C. H., Peng, Y. C., Lin, S. S., Chen, C. C., and Yeh, S. D. 2001b. Serological and molecular characterization of Peanut chlorotic fan-spot virus, a new species of the genus Tospovirus. Phytopathology 91:856-863. Ciuffo, M., Kurowski, C., Vivoda, E., Copes, B., Masenga, V., Falk, B. W., and Turina, M. 2009. A new Tospovirus sp. in cucurbit crops in Mexico. Plant Dis. 93:467-474. Ciuffo, M., Tavella, L., Pacifico, D., Masenga, V., and Turina, M. 2008. A member of a new Tospovirus species isolated in Italy from wild buckwheat (Polygonum convolvulus). Arch. Virol. 153:2059-2068. Clark, M. F. and Adams, A. N. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 68:1801-1811. Cortes, I., Livieratos, I. C., Derks, A., Peters, D., and Kormelink, R. 1998. Molecular and serological characterization of Iris yellow spot virus, a new and distinct tospovirus species. Phytopathology 88:1276-1282. Cortes, I., Saaijer, J., Wongjkaew, K. S., Pereira, A. M., Goldbach, R., Peters, D., and Kormelink, R. 2001. Identification and characterization of a novel tospovirus species using a new RT-PCR approach. Arch. Virol. 146:265–278. Cortes, I., Aires, A., Pereira, A. M., Goldbach, R., Peters, D., and Kormelink, R. 2002. Genetic organisation of Iris yellow spot virus M RNA: indications for functional homology between the Gc glycoproteins of tospoviruses and animal-infecting bunyaviruses. Arch.Virol. 147:2313-2325. Daughtrey, M. L., Jones, R. K., Moyer, J.W., Daub, M. E., and Baker, J. R. 1997. Tospoviruses strike the greenhouse industry: Impatiens necrotic spot virus has become a major pathogen on flower crops. Plant Dis. 81:1220-1230. de Avila, A. C., de Haan, P., Kormelink, R., Resende Rde, O., Goldbach, R. W., and Peters, D. 1993a. Classification of tospoviruses based on phylogeny of nucleoprotein gene sequences. J. Gen. Virol. 74:153-159. de Avila, A. C., de Haan, P., Smeets, M. L. L., Resende, R. de O., Kormelink, R., Kitajima, E. W., Goldbach, R. W., and Peters, D. 1993b. Distinct levels of relationships between Tospovirus isolates. Arch. Virol. 128:211-227. de Haan, P., de Avila, A. C., Kormelink, R., Westerbroek, A., Gielen, J. J., Peters, D., and Goldbach, R. 1992. The nucleotide sequence of the S RNA of Impatiens necrotic spot virus, a novel tospovirus. FEBS Lett. 306:27-32. de Haan, P., Kormelink, R., Resende, R. d. O., van Poelwijk, F., Peters, D., and Goldbach, R. 1991. Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J. Gen. Virol. 72:2207-2216. de Haan, P., Wagemakers, L., Peters, D., and Goldbach, R. W. 1990. The S RNA segment of Tomato spotted wilt virus has an ambisense character. J. Gen. Virol. 71:1001-1007. Dong, J. H., Cheng, X. F., Yin, Y. Y., Fang, Q., Ding, M., Li, T. T., Zhang, L. Z., Su, X. X., Huang McBeath, J., and Zhang, Z. K. 2008. Characterization of Tomato zonate spot virus, a new tospovirus in China. Arch. Virol. 153:855-864. Elliot, R. M., Bouloy, M., Calisher, C. H., Goldbach, R., Moyer, J. T., Nichol, S. T., and Pettersson, R. 2000. Bunyaviridae. In:Virus Taxonomy, Seventh Report of the International Committee on Taxonomy of Viruses. van Regenmortal, M. H. V., Fauquet, C. M., Bishop, D. H. L., Carstens, E. B., Estes, M. K., Lemon, S. M., Maniloff, J., Mayo, M. A., McGeoch, D. J., Pringle, C. R., and Wicknewr, R. B. (eds) Academic Press, San Diego, USA: p. 617-621. Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U., and Ball, L. A. 2005. Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, New York. Francki, R. I. B., Fauquent, C. M., Knudson, D. L., and Brown, F. 1991. Classification and nomenclature of viruses. Fifth Report of the International Committee on Taxonomy of Viruses. Arch. Virol. Suppl. 2:450. German, T. L., Ullman, D. E., and Moyer J. W. 1992. Tospoviruses: Diagnosis, Molecular Biology, Phylogeny, and Vector Relationships Annu. Rev. Phytopathology 30:315-348. Goldbach, R. W., and Kuo, G. 1996. Introduction:Proceedings of the international symposium on tospovirus and thrips of floral and vegetable crops. Acta Hort. 431:21-26. Hassani-Mehraban, A., Botermans, M., Verhoeven, J. T., Meekes, E., Saaijer, J., Peters, D., Goldbach, R., and Kormelink, R. 2010. A distinct tospovirus causing necrotic streak on Alstroemeria sp. in Colombia. Arch. Virol. 155:423-428. Hassani-Mehraban, A., Saaijer, J., Peters, D., Goldbach, R., and Kormelink, R. 2005. Molecular and biological comparison of two Tomato yellow ring virus (TYRV) isolates: challenging the Tospovirus species concept. Arch. Virol. 152:85-96. Heinze, C., Roggero, P., Sohn, M., Vaira, A. M., Masenga, V., and Adam, G. 2000. Peptide-derived broad-reacting antisera against tospovirus NSs-protein. J. Virol. Methods 89:137-146. Ho, C. Y., Li, J. T., Kang, Y. C., Chen, Y. T., Fan, Y. S., Huang, L. H., Tseng, H. H., Yeh, S. D., and Chen, T. C. 2009. Abstract. Emergence of Tomato spotted wilt virus infects Capsicum spp. and Zantedeschia sp. crops in Taiwan. Annual meeting of Taiwan Plant Protection Society, PP-14. p. 40. Hsu, H. T., Aebig, J., and Rochow, W. F. 1984. Differences among monoclonal antibodies to Barley yellow dwarf viruses. Phytopathology 74:600-605. Hsu, H. T., Ueng, P. P., Chu, F. H., Ye, Z., and Yeh, S. D. 2000. Serological and molecular characterization of a high temperature-recovered virus belonging to Tospovirus serogroup IV. J. Gen. Plant Pathol. 66:167-175. Huang, C. H. 2010. Master thesis. Identification of and characterization of the causal agents of two new viral diseases on Solanaceae plants in Taiwan. Department of Plant Pathology. National Chung Hsing University. Taichung. Taiwan. (in Chinese). Iwaki, M., Honda, Y., Hanada, K., and Tochihara, H. 1984. Silver mottle disease of watermelon caused by Tomato spotted wilt virus. Plant Dis. 68:1006-1008. Jain, R. K., Pandey, A. N., Krishnareddy, M., and Mandal, B. 2005. Immunodiagnosis of groundnut and watermelon bud necrosis viruses using polyclonal antiserum to recombinant nucleocapsid protein of Groundnut bud necrosis virus. J. Virol. Methods 130:162-164. Jain, R. K., Pappu, H. R., Pappu, S. S., Reddy, M. K., and Vani, A. 1998. Watermelon bud necrosis tospovirus is a distinct virus species belonging to serogroup IV. Arch. Virol. 143:1637-1644. Jain, R. K., Bag, S., Umamaheswaran, K., and Mandal, B. 2007. Natural infection by tospovirus of cucurbitaceous and fabaceous vegetable crops in India. J. Phytopathol. 155:22-25. Jan F. J., Chen T. C., and Yeh S. D. 2003. Occurrence, importance, taxonomy, and control of thrips-borne tospoviruses. In: Huang HC, Acharya SN (eds) Advances in plant disease management. Research Signpost, Trivandrum, India. p. 391–411. Jones, R. A. C., and Sharman, M. 2005. Capsicum chlorosis virus infecting Capsicum annuum in the East Kimberley region of Western Australia. Australas. Plant Pathol. 34:397-399. Kang, Y. C. 2009. Master thesis. The study of serological relationship in the nonstructural NSs protein of the genus Tospovirus. Department of Biotechnology. Asia University. Wufeng, Taichung County, Taiwan. p. 25-36. Kato, K., Hanada, K., and Kameya-Iwaki, M. 2000. Melon yellow spot virus:A distinct species of the genus Tospovirus isolated from melon. Phytopathology 90:422-426. Kikkert, M., Verschoor, A. D., Kormelink, R., Peters, D., and Goldbach, R. W. 2001. Tomato spotted wilt virus glycoproteins exhibit trafficking and localization signals that are functional in mammalian cells. J. Virol. 75:1004-1012. Kormelink, R., de Haan, P., Meurs, C., Peters, D., and Goldbach, R. W. 1992. The nucleotide sequencw of the M RNA segments of Tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. J. Gen. Virol. 73:2795-2804. Kormelink, R., Kitajima, E. W., de Haan, P., Zuidema, D., Peters, D., and Goldbach, R. W. 1991. The nonstructural protein (NSs) encoded by the ambisense S RNA segment of Tomato spotted wilt virus is associated with fibrous structures in infected plant cells. Virology 181:459-468. Kormelink, R., Storms, M., van Lent, J., Peters, D., and Goldbach, R. W. 1994. Expression and subcellular location of the NSm protein of Tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200:56-65. Latham, L. J. and Jones, R. A. C. 1996. Tomato spotted wilt virus and its management. West Aust. J. Agric. Fourth Ser. 37:86-91. Latham, L. J., and Jones, R. A. C. 1997. Occurrence of Tomato spotted wilt tospovirus innative flora, weeds and horticultural crops. Aust. J. Agric. Res. 48:359-369. Law, M. D., and Moyer, J. W. 1990. A tomato spotted wilt-like virus with a serologically distinct N protein. J. Gen. Virol. 71:933-938. Law, M. D., Speck, J., and Moyer, J. W. 1991. Nucleotide sequence of the 3'' noncoding region and N gene of the S RNA of a serologically distinct tospovirus. J. Gen. Virol. 72:2597-2601. Law, M. D., Speck, J., and Moyer, J. W. 1992. The M RNA of Impatiens necrotic spot Tospovirus (Bunyaviridae) has an ambisense genomic organization. Virology 188:732-741. Lebas, B. S. M., and Ochoa-Corona, F. M. 2007. Impatiens necrotic spot virus. In: Rao, G.P., Bragard, C., Lebas, B.S.M. (Eds.), Characterization, Diagnosis and Management of Plant Viruses. Vol. 4:221-243. Lee, A. M., Persley, D. M., and Thomas, J. E. 2002. A new tospovirus serogroup IV species infecting capsicum and tomato in Queensland, Australia. Aust. Plant Pathol. 31:231-239. Lewandowski, D. J., and Adkins, S. 2005. The tubule-forming NSm protein from Tomato spotted wilt virus complements cell-to-cell and long-distance movement of Tobacco mosaic virus hybrids. Virology 342:26-37. Li, F., and Ding, S. W. 2006. Virus counterdefense: diverse strategies for evading theRNA-silencing immunity. Annu. Rev. Microbiol. 60:503-531. Li, W., Lewandowski, D. J., Hilf, M. E., and Adkins, S. 2009. Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology. Virology 390:110-121. Lin, Y. H., Chen, T. C., Hsu, H. T., Liu, F. L., Chu, F. H., Chen, C. C., Lin, Y. Z., and Yeh, S. D. 2005. Serological comparison and molecular characterization for verification of Calla lily chlorotic spot virus as a new tospovirus species belonging to Watermelon silver mottle virus serogroup. Phytopathology 95:1482-1488. Margaria, P., Ciuffo, M., Pacifico, D., and Turina, M. 2007. Evidence that the nonstructural protein of Tomato spotted wilt virus is the avirulence determinant in the interaction with resistant pepper carrying the Tsw gene. Mol. Plant Microbe. Interact. 20:547-558. Moritz, G., Kumma, S., and Mound, L. 2004. Tospovirus transmission depends on thrips ontogeny. Virus Res. 100:143-149. Mohamed, N. A. 1981. Isolation and characterization of subviral structures form Tomato spotted wilt virus. J. Gen. Virol. 53:197-208. Moissiard, G., and Voinnet, O. 2004. Viral suppression of RNA silencing in plants. Mol. Plant Pathol. 5:71-82. Moyer, J. W. 1999. Tospoviruses (Bunyaviridae). In: Eucyclopedia of Virology. A. Granoff and R. G. Webster, eds. Academic Press, p. 1803-1807. Mound, L. A. 1996. The Thysanoptera vector species of Tospoviruses. Acta Hort. 431:298-309. Mumford, R. A., Barker, I., and Wood, K. R. 1996. The biology of the tospoviruses. Ann. Appl. Biol. 128:159-183. Murphy, F. A., Fauquet, C. M., Bishop, D. H. L., Ohabrual, S. A., Jarvis, A. W., Martelli, O. P., Mayo, M. A., and Summers, M. D. 1995. Virus Taxonomy. Classification and Nomenclature of Viruses. Sixth Report of The International Committee on Taxonomy of Viruses. Arch. Virol. Suppl. 10. Nagata, T., Carvalho, K. R., Sodré, R. D., A., Dutra, L. S., Oliveira, P. A., Noronha, E. F., Lovato, F. A., Resende, R. D., O., de Avila, A. C., and Inoue-Nagata, A. K. 2007. The glycoprotein gene of Chrysanthemum stem necrosis virus and Zucchini lethal chlorosis virus and molecular relationship with other tospoviruses. Virus Gene 35:785-93. Pang, S. Z., Slightom, J. L., and Gonsalves, D. 1993. The biological properties of a distinct tospovirus and sequence analysis of its S RNA. Phytopathology 83: 728-733. Pappu, H. R., Jones, R. A. C., and Jain, R. K. 2009. Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Res. 141:219-236. Parrella, G., Gognalons, P., Gebre-Selassiè, K., Vovlas, C., and Marchoux, G. 2003. An update of the host range of Tomato spotted wilt virus. J. Plant Pathol. 85:227-264. Persley, D. M., Thomas, J. E., and Sharman, M. 2006. Tospoviruses—an Australian perspective. Aust. Plant Pathol. 35:161-180. Peters, D., Wijkamp, L., van de Wetering, F., and Goldbach, R. 1996. Vector relations in the transmission and epidemology of tospoviruses. Acta Hort. 431:29-42. Prins, M., and Goldbach, R. 1998. The emerging problem of tospovirusinfection and nonconventional methods of control. Trends Microbiol. 6:31-35. Qu, F., and Morris, T. J. 2005. Suppressors of RNA silencing encoded by plant viruses and their role in vial infections. FEBS Lett. 579:5958-5964. Reddy, D. V. R., and Wightman, J. A. 1988. Tomato spotted wilt virus: Thrips transmission and control. Adv. Dis. Vector Res. 5:203-220. Reddy, D. V. R., Ratna, A. S., Sudarshana, M. R., and Kiran Kumar, I. 1992. Serological relationships and purification of bud necrosis virus, a tospovirus occurring in peanut (Archis hypogaea L.) in India. Ann. Appl. Biol. 120:279-286. Roggero, P., Ogliara, P., Dellavalle, G., Lisa, V., Malavasi, F., and Adam, G. 1996a. A general tospovirus assay using monoclonal antibodies against Tomato spotted wilt virus glycoproteins. Acta Hort. 431:167-175. Roth, B. M., Pruss, G. J., and Vance, V. B. 2004. Plant viral suppressors of RNA silencing. Virus Res. 102:97-108. Ruoslahti, E., and Pierschbacher, M. D. 1986. Arg-Gly-Asp: A versatile cell recognition signal. Cell 44:517-518. Sakimura, K. 1962. The present status of thrips-borne disease. Pages 33-40 in: Biological transmission of disease agents. K. Maramorocsh (ed.), Academic Press, New York. Samuel, G., Bald, J. G., and Pittman, H. A. 1930. Investigation on "spotted wilt" of tomatoes. Aust. Counc. Sci. Ind. Res. Bull. 44:1-64. Satyanarayana, T., Gowda, S., Reddy, K. L., Mitchell, S. E., Dawson, W. O., and Reddy, D. V. R. 1998. Peanut yellow spot virus is a member of a new serogroup of Tospovirus genus based on small (S) RNA sequence and organization. Arch. Virol. 143:353-364. Satyanarayana, T., Mitchell, S. E., Reddy, D. V., Kresovich, S., Jarret, R.,Naidu,R. A., Gowda, S., and Demski, J.W. 1996. The complete nucleotide sequence and genome organization of the M RNA segment of Peanut bud necrosis tospovirus and comparison with other tospoviruses. J. Gen. Virol.77:2347-2352. Sin, S. H., McNulty, B. C., Kennedy, G. G., and Moyer, J. W. 2005. Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. Proc. Natl. Acad. Sci. USA. 102:5168-5173. Stobbs, L. W., Broadbent, A. B., Allen, W. R., and Stirling, A. L. 1992. Transmossion of Tomato spotted wilt virus by the western flower thrip to weeds and native plants found in southern Ontario. Plant Dis. 76:23-29. Storms, M. M., Kormelink, R., Peters, D., van Lent, J. W., and Goldbach, R. W. 1995. The nonstructural NSm protein of Tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 214:485-493. Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., Tsuda, S., and Okuno, T. 2002. Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Lett. 532:75-79. Tsompana, M., and Moyer, J.W., 2008. Tospoviruses. In: Mahy, B.W.J., van Regenmortel, M.H.V. (Eds.), Encyclopedia of Virology, vol. 5, 3rd ed. Elsevier Ltd., Oxford, UK, p. 157-162. Ullman, D. E., German, T. L., Sherwood, J. L., Westcot,D. M., and Cantone, F. A. 1993. Tospovirus replication in insect vector cells: immunocytochemical evidence that the nonstructural protein encoded by the S RNA of tomato spotted wilt tospovirus is present in thrips vector cells. Phytopathology 83:456-463. Ullman, D. E., Meideros, R., Campbell, L. R., Whitfield, A. E., Sherwood, J. L., and German, T. L. 2002. Thrips as vectors of tospoviruses. Adv. Bot. Res. 36:113-140. Ullman, D. E., Sherwood, J. L., and German. T. L. 1997. Thrips as vectors of plant pathogens.In: Lewis, T. (Ed.), Thrips as Crop Pests. CAB International, p. 539-564. Ullman, D. E., Westcot, D. M., Cantone, F. A., Sherwood, J. L., and German, T. L. 1992. Immunocytochemical evidence for tomato spotted wilt virus (TSWV) replication in cells of the western flower thrips, Frankliniella occidentalis (Pergande). Phytopathology 82:1087-1145. Ullman, D. E., Westcot, D. M., Chenault, K. D., Sherwood, J. L., and German, T. L. 1995. Compartmentalization, intracellular transport, and autophagy of tomato spotted wilt tospovirus proteins in infected thrips cells. Phytopathology 85:644-54 van Kammen, A., Henstra, S., and Le, T. S. 1966. Morphology of Tomato spotted wilt virus. Virology 30:574-577. Venkat, H., Anjali, P.G., Karande, A., Krishnaredd, M., and Savithri1, H. S. 2008. Monoclonal antibodies to the recombinant nucleocapsid protein of a groundnut bud necrosis virus infecting tomato in Karnataka and their use in profiling the epitopes of Indian tospovirus isolates. Curr. Sci. 952-957. Vialat, P., Billecocq, A., Kohl, A., and Bouloy, M. 2000. The S segment of rift valley fever phlebovirus (Bunyaviridae) carries determinants for attenuation and virulence in mice. J. Virol. 74:1538-1543. Voinnet, O. 2005. Induction and suppression of RNA silencing: insights from viral infections. Nat. Rev. Genet. 6:206-220. Wen, Y. Y. 1998. Bachelor thesis. Nucleotide sequence analyses of the N gene of a tospovirus isolated from Zantedeschia aethiopica. Department of Plant Pathology. National Chung-Hsing University. Taichung. Taiwan. (in Chinese). Whitfield, A. E., Ullman, D. E., and German, T. L. 2005. Tospovirus-thrips interactions Annu. Rev. Phytopathol. 43:459-489. Wijkamp, I., van Lent, J., Kormelink, R., Goldbach, R., and Peters, D. 1993. Multiplication of Tomato spotted wilt virus in its insect vector, Frankliniella occidentalis. J. Gen. Virol. 74:341-349. Wilson, C. R. 2001. Resistance to infection and translocation of Tomato spotted wilt virus in potatoes. Plant Pathol. 50:402-410. Wu, J., Yu, C., Yang, C., and Zhou, X. 2009. Monoclonal antibodies against the recombinant nucleocapsid protein of Tomato spotted wilt virus and its application in virus detection. J. Phytopathol. 157:344-349. Yeh, S. D., and Chang, T. F. 1995. Nucleotide sequence of the N gene of Watermelon silver mottle virus, a proposed new member of the genus Tospovirus. Phytopathology 85:58-64. Yeh, S. D., Chao, C. H., Cheng, Y. H., and Chen, C. C. 1996. Serological comparison of four distinct tospoviruses by polyclonal antibodies to purified nucleocapsid proteins. Acta Hort. 431:122-134. Yeh, S. D., and Chu, F. H. 1999. Occurrence of tospovriuses and recent development for their rapid detection. Plant Pathol. Bull. 8:125-132. Yeh, S. D., Cheng, Y. H., Jih, C. L., Chen, C. C., and Chen, M. J. 1988. Identification of tomato spotted infecting horn melon and watermelon. Plant Prot. Bull. 30:319-320. Yeh, S. D., and Gonsalves, D. 1984. Purification and immunological analysis of cylindrical-inclusion protein induced by Papaya ringspot virus and Watermelon mosaic virus I. Phytopathology 74:1273-1278. Yeh, S. D., Lin, Y. C., Cheng, Y. H., Jih, C. L., Chen, M. J., and Chen, C. C. 1992. Identification of tomato spotted wilt-like virus on watermelon in Taiwan. Plant Dis. 76:835-840. Zhang, Q. P., Ding, Y. M., Li, M.,2010. First report of Impatiens necrotic spot virus infecting Phalaenopsis and Dendrobium Orchids in Yunnan province, China. Plant Dis. 94:915. Zhang, Q. P., Ding, Y. M., Li, M., Zhou, J., Bai, Y. H., Cun, D. Y., and Cao, Y. H. 2008. Detection and molecular identification of Impatiens necrotic spot virus isolated from spotted Oncidium. Plant Quarantine 22:348-351. (in Chinese). Zheng, Y. X., Chen, C. C., Yang, C. J., Yeh, S. D., and Jan, F. J. 2008. Identification and characterization of a tospovirus causing chlorotic ringspots on Phalaenopsis orchids. Eur. J. Plant Pathol. 120:199-209. Zheng, Y. X., Huang, C. H., Cheng, Y. H., Kuo, F. Y. and Jan, F. J. 2010a.First report of Tomato spotted wilt virus in sweet pepper in Taiwan. Plant Dis. 94:920. Zheng, Y. X., Li, Y. Z., Liu, Y. T., Xu, X. G., Y, M., and Zhu Q. Y. 2010b. Identification of Impatiens necrosis spot virus from Phalaenopsis amabilis in Yunnan. Acta Horticulturae Sinica 37:313-318. (in Chinese).
摘要: 依照病毒核鞘蛋白 (nucleocapsid protein, NP) 及地緣分佈關係,可將番茄斑點萎凋病毒 (Tomato spotted wilt virus, TSWV) 血清群病毒和鳳仙花壞疽斑點病毒 (Impatiens necrotic spot virus, INSV) 獨立血清型歸類為歐美型番茄斑萎病毒屬病毒 (Euro-America type tospoviruses)。及時有效又正確的檢測系統有助台灣防堵歐美型病毒的入侵或進一步擴散。因此,本研究擬發展精確且快速偵測歐美型病毒之多元抗體 (抗血清) 及單元抗體,其中又以歐美型病毒中兩種會造成嚴重經濟損害的典型病毒 INSV 和 TSWV 主要為目標。由於此屬病毒的非結構性 NSs 蛋白 (Nonstructural protein, NSs) 為基因沉寂抑制子 (gene silencing suppressor) ,幫助病毒抵抗寄主抗病反應,並在病毒感染植物內會大量聚集成內含體。因此本研究以細菌表現系統來表現 INSV 和 TSWV 的 NSs 蛋白,蛋白經純化後用以生產抗體。 INSV NSs (INSs) 老鼠抗血清中 (antiserum) 的多元抗體 (polyclonal antibody) 不僅偵測到INSV 病毒,更可同時檢測到TSWV 血清群中的 TSWV 、花生輪斑病毒 (Groundnut ringspot virus, GRSV) 和番茄黃化斑點病毒 (Tomato chlorotic spot virus, TCSV) 病毒。另外 TSWV NSs (TNSs) 老鼠抗血清中的多元抗體也可同時偵測到此三種 TSWV 血清群病毒及 INSV 病毒。經融合瘤細胞篩選過程,挑 選能產生高度辨識 INSV 或 TSWV 抗體之融合瘤細胞株系,用以生產腹水。細胞株 3E12D4 產生之腹水MAb-INSs-3E12D4 只專一性辨認 INSV,力價達 2.05 × 106 倍;而細胞株 81D9E2 產生之腹水 MAb-TNSs-81D9E2 只專一性辨識TSWV ,力價為 5.12 × 105 倍。另外,細胞株 55G4E7 所產生的單元抗體 MAb-INSs-55G4E7 ,可同時與 INSV、 GRSV 和 TCSV 反應,其力價為 5.12 × 105 倍。上述結果顯示,利用 INSs 及 TNSs 蛋白作為抗原所生產出來的多元和單 元抗體,可有效作為廣泛偵測歐美型病毒及單獨檢測 INSV 或 TSWV 的工具,將有助於番茄斑點萎凋病毒屬檢測工作及 NSs 蛋白功能之研究。結合 MAb-INSs-55G4E7 和 MAb-TNSs-81D9E2,做成二合一抗體套組,可專一性辨認歐美型番茄斑萎病毒屬病毒,區別亞洲型番茄斑萎病毒屬病毒 (Asia type tospoviruses) 及其他病毒,為防檢疫上防止歐美型番茄斑萎病毒屬病毒入侵及監控歐美型番茄斑萎病毒屬病毒在台灣分佈情形之利器。此外,大部分歐美型和亞洲型番茄斑萎病毒屬病毒可被三合一單元抗體套組 (MAb-INSs-55G4E7、 MAb-TNSs-81D9E2 及本研究室先前生產的專一性辨識亞洲型番茄斑萎病毒屬病毒的單元抗體MAb-WNSs-231E6D12) 所辨識,此組合加速田間檢測效率及精確度。本研究生產之血清學診斷鑑定利器,配合本研究團隊針對番茄斑萎病毒屬病毒設計的簡併式引子對,可建立起及時有效又正確的番茄斑萎病毒屬病毒檢測系統。
Members of the Tomato spotted wilt virus (TSWV) serogroup and Impatiens necrotic spot virus (INSV) serotype are regarded as Euro-America type tospoviruses according to their nucleocapsid protein (NP) and geographical distribution. Accurate and prompt detection for members of Euro-America type tospoviruses is crucial for effective quarantine to prevent possible invasion or limit further spreading of these viruses in Taiwan. In this investigation, we attempted to develop polyclonal antibody (antisera) and monoclonal antibodies (MAbs) to INSV and TSWV, two representative and economically important Euro-America type tospoviruses, as effective and accurate detection tools. The tospovirus-encoded nonstructural NSs protein, which accumulates abundantly in infected cells, is the gene silencing suppressor to protect the virus from host gene silencing in plants. In this investigation, the NSs proteins of INSV and TSWV were individually expressed in the bacterial system and the purified proteins were used for producing of antibodies from mouse. The mouse antisera produced against the purified recombinant INSV NSs (INSs) proteins reacted strongly with the crude antigen of INSV and also cross-reacted with three members of the TSWV serogroup tospoviruses, TSWV, Groundnut ringspot virus (GRSV) and Tomato chlorotic spot virus (TCSV), in indirect ELISA and western blot analysis. Similarly, the anti-TSWV NSs (TNSs) antisera reacted with the crude antigens from the three analysed members of TSWV serogroup and INSV serotype. In addition, MAbs against purified NSs proteins were generated by hybridoma technique. The anti-INSs hybridoma line 3E12D4 generated MAb-INSs-3E12D4 that reacted specifically with INSV NSs protein, with a titer (ascitic fluid) up to 2.05 106 X. The anti-TNSs hybridoma line 81D9E2 generated MAb-TNSs-81D9E2 that reacted specifically with the NSs protein of TSWV, with titers (ascitic fluids) up to 5.12 105 X. Moreover, the MAb-INSs-55G4E7 of anti-INSs hybridoma line 55G4E7 reacted with INSV NSs protein and with the NSs proteins of other two viruses from TSWV serogroup, GRSV and TCSV , with a titer (ascitic fluid) up to 5.12 105 X. Hence, the presently produced antisera and MAbs to INSV NSs and TSWV NSs proteins can be used to study the roles of muti-funtion NSs proteins and also as effective tools not only for the specific detection of INSV and TSWV but also for the detection of Euro-America type tospoviruses. In addition, our resilts indicated that the combination of MAb-INSs-55G4E7 and MAb-TNSs-81D9E2 can be used as a two-in-one kit to distinguish the Euro-America type tospoviruses from Asia type tospoviruses, and the three-in-one kit (e.g. MAb-INSs-55G4E7, MAb-TNSs-81D9E2 and the previously developed MAb-WNSs-231E6D12) can be used as a accurate and prompt detection tool for the detection of both Euro-America type and Asia type tospoviruses. A fast and accurate detection method can be established by the cooperation of the specific degenerate primers privously developed in our group with the MAb kits generated in this study.
URI: http://hdl.handle.net/11455/31494
其他識別: U0005-2806201009584100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2806201009584100
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.