Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3161
標題: 以光還原及溶膠凝膠法製備鉑-二氧化鈦光觸媒之光催化活性研究
Photocatalytic Activity of Platinum-Titania Photocatalyst Prepared by Photoreduction and Sol-Gel Method
作者: 呂昇霖
Lu, Sheng-Lin
關鍵字: 光催化反應
photocatalytic reaction
溶膠凝膠法
二氧化鈦
光還原法

sol-gel method
titania
photoreduction method
platinum
出版社: 化學工程學系所
引用: 1. E. M. Levin, H. F. McMurdie, “Phase diagrams for ceramists”, The American Cermic Society, Inc., 76 (1975) 4150-4999. 2. M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S.M. Dunlop, J. W.J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications”, Applied Catalysis B: Environmental, 125 (2012) 331– 349. 3. Y. H. Chuang, Y. J. Lin, “Preparation and Optical Properties of ZnO Thin Films from Aqueous Solutions”, (2009) . 4. C. S. Fang, Y. W. Chen, “Preparation of titania particles by thermal hydrolysis of TiCl4 in n-propanol solution”, Materials Chemistry and Physics, 78 (2003) 739–745. 5. K. Tsukuma, T. Akiyama, H. Imai, “Liquid phase deposition film of tin oxide”, Journal of Non-Crystalline Solids, 210 (1997) 48-54. 6. M. L. Jheng, “Studies on the photocatalytic hydrogen production by methanol reforming over Pt/TiO2 and Au/TiO2”,(2007). 7. A. L. Linsebigler, G. Lu, J. T.Yates, “ Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results”, Chemical reviews, 95 (1995) 735-758. 8. G. Centi, S. Perathoner, “ Opportunities and prospects in the chemical recycling of carbon dioxide to fuels” ,Catalysis Today 148 (2009) 191–205. 9. Y. Li, M. Ma, W. Chen, L. Li, M. Zen, “ Preparation of Ag-doped TiO2 nanoparticles by a miniemulsion method and their photoactivity in visible light illuminations”, Materials Chemistry and Physics 129 (2011) 501– 505. 10. C. R. Estrellan, C. Salim, H. Hinode, “Photocatalytic decomposition of perfluorooctanoic acid by iron and niobium co-doped titanium dioxide”, Journal of Hazardous Materials 179 (2010) 79–83. 11. K. C. Yu, J. S. Li, “The Photocatalysis of Cr(VI) by UV-TiO2/ZnO”, (2008). 12. N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, “Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors”, Journal of Photochemistry and Photobiology A: Chemistry, 85 (1995) 247-255. 13. B. Huang, Y. Yanga, X. Chena, D. Ye, “Preparation and characterization of CdS–TiO2 nanoparticles supported on multi-walled carbon nanotubes”, Catalysis Communications 11 (2010) 844–847. 14. S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, 354 (1991) 56-58. 15. S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter” , Nature, 363 (1993) 603-605. 16. D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls” Nature, 363 (1993) 605-607. 17. 洪昭南、徐逸明、王宏達 ,「奈米碳管結構及特性簡介」,化工,第49卷第1 期,第23-30 頁,2002。 18. M. S. Dresselhaus, G. Dresselhaus, R. Saito, “Physics of carbon nanotubes”, Carbon, 33 (1995) 883-891. 19. V. N. Popov, “Carbon nanotubes: properties and application”, Materials Science and Engineering, 43 (2004) 61-102. 20. A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, 238 (1972) 37- 21. R. W. Matthews, “Photooxidation of organic impurities in water using thin films of titanium dioxide”, Journal of Physical Chemistry, 91 (1987) 3328-3333. 22. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides”, Science, 293 (2001) 269-271. 23. S. U. M. Khan, M. Al-Shahry, W. B. Ingler Jr., “Efficient Photochemical WaterSplitting by a Chemically Modified n-TiO2”, Science, 297 (2002) 22-43. 24. L. Zhang, Y. Zhu, Y. He, W. Li, H. Sun, “Preparation and performances of mesoporous TiO2 film photocatalyst supported on stainless steel”, Applied Catalysis A: General, 308 ( 2006) 82-90. 25. W. G. Zhang, L. L. Zhang, Z. J. Jiang, R. Q. Li, X. J. Yang, X. Wang, L. D. Lua, “Synthetic route to the nano-sized titania with high photocatalyticactivity using a mixed structure-directing agent”, Materials Chemistry and Physics, 105 (2007) 414–418. 26. D. L. Liao, B. Q. Liao, “ Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants”, Journal of Photochemistry and Photobiology A: Chemistry, 187 (2007) 363–369. 27. A. K. L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, “ One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity” Applied Catalysis B: Environmental, 91 (2009) 397–405. 28. J. Tian, J. Wang, J. Dai, X. Wang, Y. Yin, “ N-doped TiO2/ZnO composite powder and its photocatalytic performance for degradation of methyl orange”, Surface and Coatings Technology, 204 (2009) 723–730. 29. C. C. Mao, H. S. Weng, “ Promoting effect of adding carbon black to TiO2 for aqueous photocatalytic degradation of methyl orange”, Chemical Engineering Journal, 155 (2009) 744–749. 30. S. Ghasemi, S. Rahimnejad, S. Rahman Setayesh, S. Rohani, M.R. Gholami, “Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid”, Journal of Hazardous Materials 172 (2009) 1573–1578. 31. Q. H. Zhang , W. D. Han, Y. J. Hong, J. G. Yu, “Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst”, Catalysis Today 148 (2009) 335–340. 32. C. Xu, L. Cao, G. Su, W. Liu, H. Liu, Y. Yu, X. Qu, “Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes”, Journal of Hazardous Materials, 176 (2010) 807–813.38. 33. “Sythesis and Photocatalytic Activity of Titania Catalyst Supported on Carbon Nanotudes by Sol-Gel Method” , (2011) 國立中興大學化工所 陳冠璋碩士論文 . 34. S. Wanga, S. Zhoua, “Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO2 under UV and visible-light irradiation”, Journal of Hazardous Materials 185 (2011) 77–85. 35. F. J. Zhang, W. C. Oh, K. Zhang, “New insight for enhancing photocatalytic activity of MWCNT/TiO2 by decorating palladium nanoparticles as charge-transfer channel”, Materials Research Bulletin 47 (2012) 619–624. 36. Z. D. Meng, M. M. Peng, L. Zhu, W. C. Oh, F. J. Zhang, “Fullerene modification CdS/TiO2 to enhancement surface area and modification of photocatalytic activity under visible light”, Applied Catalysis B: Environmental 113– 114 (2012) 141– 149. 37. A. N. O‥kte, O‥. Yilmaz, “Photodecolorization of methyl orange by yttrium incorporated TiO2 supported ZSM-5” ,Applied Catalysis B: Environmental 85 (2008) 92–102. 38. N. E. Alireza, H. Shohreh, “Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst”, Applied Catalysis A: General 388 (2010) 149–159. 39. K. S. Yoo, H. Choi, D. D. Dionysiou, “Synthesis of anatase nanostructured TiO2 particles at low temperature using ionic liquid for photocatalysis”, Catalysis Communications 6 (2005) 259-262. 40. Y. Ebina,T. Sasaki, M. Harada, and M. Watanabe, “Restacked Perovskite Nanosheets and Their Pt-Loaded Materials as Photocatalysts”, Chem. Mater. (2002), 14, 4390-4395. 41. R. A. Spurr, W. Myers, “Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer”, Analytical Chemistry, 29 (1957) 760-762.
摘要: 本論文研究目的為利用溶膠凝膠法製備二氧化鈦並利用光還原法將鉑奈米金屬離子還原沉積在二氧化鈦的表面,將其應用於光催化反應,觸媒變數包含不同煅燒溫度、不同種類保護劑添加、不同克重PEG400添加、不同攪拌方式製備、不同鉑比例負載、不同波長紫外光照製備負載0.5wt%的鉑以及不同基底材料製備負載1wt.%的鉑,觸媒活性則以石英玻璃反應器在50ppm甲基橙水溶液250ml於150分鐘紫外光照射下進行反應測試。光催化反應變因包含不同波長光源、不同初濃度之甲基橙水溶液及光降解亞甲基藍水溶液進行光催化反應。 實驗結果顯示,利用溶膠凝膠法製備觸媒,當煅燒溫度為500℃時觸媒可以提高甲基橙水溶液之轉化率,於二氧化鈦中負載1wt.%的鉑金屬之觸媒能夠有效提升觸媒的反應活性,於150分鐘光催化反應,其轉化率可以達到91.5%。其負載於二氧化鈦上之鉑顆粒尺寸均一且細小,其顆粒尺寸約為2-3nm。 以異丙氧基鈦製備之二氧化鈦為基材製備的Pt(1)TiO2(99)(TTIP),觸媒於進行光催化反應操作變因中,當波長為365nm之光源進行光照反應,反應經150分鐘甲基橙轉化率可達92.3%,而針對亞甲基藍水溶液進行光照反應,反應經過150分鐘亞甲基藍轉化率可達95.1%。
In this thesis, the purpose of this study is to prepare platinum-titania photocatalyst by photoreduction and sol-gel method and to apply it on photocatalytic reaction. The catalyst were tested by using quartz glass reactor under the UV light illumination. The parameters of catalyst preparation include temperature of calcination, kinds of protectant, weight of PEG400 adding, stirring, loading of platinum, UV light source to prepare 0.5wt.% of platinum and different kinds of base to prepare 1wt.% of platinum supported on titania. Operating conditions in photocatalytic reaction included wavelength illumination, initial concentration of methyl orange solution and photodegradation of methylene blue. The results revealed that the prepared catalyst by sol-gel method, with calcination temperature at 500℃ enhanced conversion of methyl orange solution. Loading 1wt.% platinum in titania enhanced activity of catalyt. Under the UV light illumination, methyl orange solution was got 91.5% of conversion. The particle size of platinum metal is very small with particle size at almost 2-3 nm. The catalyst of Pt(1)TiO2(99)(TTIP) was used to proceed the photodegration of the methyl orange solution under irradiation of UV light (365nm), and the conversion of methyl orange solution was 92.3% in 150 min. Photodegradation of the methylene blue solution under irradiation of UV light (365nm), the conversion of methylene blue solution was 95.1% when reaction time is 150 min.
URI: http://hdl.handle.net/11455/3161
其他識別: U0005-2706201310132600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2706201310132600
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.