Please use this identifier to cite or link to this item:
標題: 以基因重組大腸桿菌建立二氧化碳固定平台
Development of the bio-mitigation platform for carbon dioxide fixation by recombinant Escherichia coli
作者: 莊宗諭
Zhuang, Zong-Yu
關鍵字: 基因重組大腸桿菌
recombinant E. coli
carbon dioxide fixation
fermentation condition
出版社: 化學工程學系所
引用: Alam, K. Y., & Clark, D. P. (1989). Anaerobic fermentation balance of Escherichia coli as observed by in vivo nuclear magnetic resonance spectroscopy. JOURNAL OF BACTERIOLOGY, 171(11), 6213-6217. Andersson, I., & Backlund, A. (2008). Structure and function of Rubisco. Plant Physiol Biochem, 46(3), 275-291. Atsumi, S., Hanai, T., & Liao, J. C. (2008). Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 451(7174), 86-89. Bassham, J. A., Benson, A. A., & Calvin, M. (1950). The Path of Carbon in Photosynthesis VIII. : The Role of Malic Acid. J. Biol. Chem, 185, 781-787. Bentley, R., & Meganathan, R. (1982). Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiological reviews, 46(3), 241. Biomol. Guide to Gene Expression in BL21. Chae, S. R., Hwang, E. J., & Shin, H. S. (2006). Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresour Technol, 97(2), 322-329. Chance, R. E., & Frank, B. H. (1993). Research, development, production, and safety of biosynthetic human insulin. Diabetes care, 16(Supplement 3), 133-142. Chapman, A. G., Fall, L., & Atkinson, D. E. (1971). Adenylate Energy Charge in Escherichia coli During Growth and Starvation. JOURNAL OF BACTERIOLOGY, Vol. 108, No. 3, 1072-1086. Cornelis, P. (2000). Expressing genes in different Escherichia coli compartments. Current opinion in biotechnology, 11(5), 450-454. Cousins, A. B., Ghannoum, O., Von Caemmerer, S., & Badger, M. R. (2010). Simultaneous determination of Rubisco carboxylase and oxygenase kinetic parameters in Triticum aestivum and Zea mays using membrane inlet mass spectrometry. Plant, Cell & Environment, 33(3), 444-452. Cubasch, U., Ding, Y., Mauritzen, C., Mokssit, A., Peterson, T., & Prather, M. (2007). IPCC Fourth Assessment Report (Vol. 1, pp. 96). IPCC: Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Daruwalla, K. R., Paxton, A. T., & Henderson, P. (1981). Energization of the transport systems for arabinose and comparison with galactose transport in Escherichia coli. Biochemical Journal, 200(3), 611. Davanloo, P., Rosenberg, A. H., Dunn, J. J., & Studier, F. W. (1984). Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proceedings of the National Academy of Sciences, 81(7), 2035-2039. Desai, T. A., & Rao, C. V. (2010). Regulation of arabinose and xylose metabolism in Escherichia coli. Applied and Environmental Microbiology, 76(5), 1524-1532. Dharmadi, Y., Murarka, A., & Gonzalez, R. (2006). Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnology and Bioengineering, 94(5), 821-829. Dlugokencky, E., & Tans, P. (2013). Recent Global CO2. NOAA/ESRL. Retrieved from Douglas, A., & Costas, T. (2005). Separation of CO2 from Flue Gas: A Review. Separation Science and Technology, 40(1-3), 321-348. Dubendorf, J. W., & Studier, F. W. (1991). Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. Journal of molecular biology, 219(1), 45-59. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E., & Relman, D. A. (2005). Diversity of the human intestinal microbial flora. Science, 308(5728), 1635-1638. Escherich, T. (1886). Die darmbakterien des sauglings und ihre beziehungen zur physiologie der Verdauung: F. Enke. Garcia-Gonzalez, L., Geeraerd, A., Spilimbergo, S., Elst, K., Van Ginneken, L., Debevere, J., Van Impe, J., & Devlieghere, F. (2007). High pressure carbon dioxide inactivation of microorganisms in foods: the past, the present and the future. International Journal of Food Microbiology, 117(1), 1-28. Giordano, M., Beardall, J., & Raven, J. A. (2005). CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol., 56, 99-131. Giordano, T. J., Deuschle, U., Bujard, H., & McAllister, W. T. (1989). Regulation of coliphage T3 and T7 RNA polymerases by the lac represser-operator system. Gene, 84(2), 209-219. Greene, D. N., Whitney, S. M., & Matsumura, I. (2007). Artificially evolved Synechococcus PCC6301 Rubisco variants exhibit improvements in folding and catalytic efficiency. Biochem J, 404(3), 517-524. Gubernator, B., Bartoszewski, R., Kroliczewski, J., Wildner, G., & Szczepaniak, A. (2008). Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic cyanobacterium Thermosynechococcus elongatus. Photosynth Res, 95(1), 101-109. Guzman, L.-M., Belin, D., Carson, M. J., & Beckwith, J. (1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. JOURNAL OF BACTERIOLOGY, 177(14), 4121-4130. Hadi, F. (2009). Modeling the Kinetics of Activation and Reaction of Rubisco from Gas Exchange. In A. Laisk, L. Nedbal & Govindjee (Eds.), Photosynthesis in silico (Vol. 29, pp. 275-294): Springer Netherlands. Hamilton, J., Finzi, A., DeLucia, E., George, K., Naidu, S., & Schlesinger, W. (2002). Forest carbon balance under elevated CO2. Oecologia, 131(2), 250-260. Harris, G. R., Sexton, D. M. H., Booth, B. B. B., Collins, M., & Murphy, J. M. (2013). Probabilistic projections of transient climate change. Climate Dynamics, 40(11-12), 2937-2972. Ho, S.-H., Chen, C.-Y., & Chang, J.-S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol, 113, 244-252. Howard, T. P., Middelhaufe, S., Moore, K., Edner, C., Kolak, D. M., Taylor, G. N., Parker, D. A., Lee, R., Smirnoff, N., & Aves, S. J. (2013). Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proceedings of the National Academy of Sciences, 110(19), 7636-7641. Hsueh, H. T., Chu, H., & Yu, S. T. (2007). A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere, 66(5), 878-886. Huang, C.-J., Lin, H., & Yang, X. (2012). Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. Journal of industrial microbiology & biotechnology, 39(3), 383-399. Ihssen, J., Kowarik, M., Dilettoso, S., Tanner, C., Wacker, M., & Thony-Meyer, L. (2010). Production of glycoprotein vaccines in Escherichia coli. Microbial cell factories, 9, 61-61. Kajiwara, S., Yamada, H., Ohkuni, N., & Ohtaguchi, K. (1997). Design of the bioreactor for carbon dioxide fixation by synechococcus PCC7942. Energy Conversion and Management, 38, S529-S532. Keller, C. F. (2008). Global warming: a review of this mostly settled issue. Stochastic Environmental Research and Risk Assessment, 23(5), 643-676. Kellogg, E. A., & Juliano, N. D. (1997). The structure and function of RuBisCO and their implications for systematic studies. AMERICAN JOURNAL OF BOTANY, 84(3), 413-428. Kemp, A. C., Horton, B. P., Donnelly, J. P., Mann, M. E., Vermeer, M., & Rahmstorf, S. (2011). Climate related sea-level variations over the past two millennia. Proceedings of the National Academy of Sciences, 108(27), 11017-11022. Kim, K., & Portis, A. R., Jr. (2006). Kinetic analysis of the slow inactivation of Rubisco during catalysis: effects of temperature, O2 and Mg++. Photosynth Res, 87(2), 195-204. Kubitschek, H. (1990). Cell volume increase in Escherichia coli after shifts to richer media. JOURNAL OF BACTERIOLOGY, 172(1), 94-101. Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F. X., & Langenhove, H. v. (2010). Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol, 28(7), 371-380. Kumar, A., Yuan, X., Sahu, A. K., Dewulf, J., Ergas, S. J., & Langenhove, H. V. (2010). A hollow fiber membrane photo‐bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach. Journal of Chemical Technology and Biotechnology, 85(3), 387-394. Lopez, C. V. G., Fernandez, F. G. A., Sevilla, J. M. F., Fernandez, J. F. S., Garcia, M. C. C., & Grima, E. M. (2009). Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes. Bioresour Technol, 100(23), 5904-5910. Lam, M. K., & Lee, K. T. (2013). Effect of carbon source towards the growth of Chlorella vulgaris for CO2 bio-mitigation and biodiesel production. International Journal of Greenhouse Gas Control, 14, 169-176. Lambertsen, C. J. (2006). Carbon Dioxide Tolerance and Toxicity: Environmental Biomedical Stress Data Center, Institute for Environmental Medicine, University of Pennsylvania Medical Center. Lee, S. J., Lee, D.-Y., Kim, T. Y., Kim, B. H., Lee, J., & Lee, S. Y. (2005). Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Applied and Environmental Microbiology, 71(12), 7880-7887. Lusk, J. E., Williams, R., & Kennedy, E. P. (1968). Magnesium and the growth of Escherichia coli. Journal of Biological Chemistry, 243(10), 2618-2624. Makino, A., Nakano, H., & Mae, T. (1994). Effects of Growth Temperature on the Responses of Ribulose-1,5-Biphosphate Carboxylase, Electron Transport Components, and Sucrose Synthesis Enzymes to Leaf Nitrogen in Rice, and Their Relationships to Photosynthesis. Plant Physiology, 105(4), 1231-1238. Makrides, S. C. (1996). Strategies for achieving high-level expression of genes in Escherichia coli. Microbiological reviews, 60(3), 512-538. Marcus, Y., Altman-Gueta, H., Wolff, Y., & Gurevitz, M. (2011). Rubisco mutagenesis provides new insight into limitations on photosynthesis and growth in Synechocystis PCC6803. J Exp Bot, 62(12), 4173-4182. McNabb, W. C., Peters, J. S., Foo, L. Y., Waghorn, G. C., & Jackson, F. S. (1998). Effect of condensed tannins prepared from several forages on the in vitro precipitation of ribulose‐1, 5‐bisphosphate carboxylase (Rubisco) protein and its digestion by trypsin (EC 2.4. 21.4) and chymotrypsin (EC 2.4. 21.1). Journal of the Science of Food and Agriculture, 77(2), 201-212. Miller, G. L. (1959). Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar ANALYTICAL CHEMISTRY, 31,No.3, 426-428. Morais, M. G. d., & Costa, J. A. V. (2007). Biofixation of carbon dioxide by Spirulin sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology, 129(3), 439-445. Nishitani, Y., Yoshida, S., Fujihashi, M., Kitagawa, K., Doi, T., Atomi, H., Imanaka, T., & Miki, K. (2010). Structure-based Catalytic Optimization of a Type III Rubisco from a Hyperthermophile. Journal of Biological Chemistry, 285(50), 39339-39347. NOAA. (2012). Global Surface Temperature Anomalies. Retrieved from O’Sullivan, E., & Condon, S. (1999). Relationship between acid tolerance, cytoplasmic pH, and ATP and H+-ATPase levels in chemostat cultures of Lactococcus lactis. Applied and Environmental Microbiology, 65(6), 2287-2293. Ogden, S., Haggerty, D., Stoner, C. M., Kolodrubetz, D., & Schleif, R. (1980). The Escherichia coli L-arabinose operon: binding sites of the regulatory proteins and a mechanism of positive and negative regulation. Proceedings of the National Academy of Sciences, 77(6), 3346-3350. Orssengo, G. J. (2010). Predictions Of Global Mean Temperatures & IPCC Projections Parikh, M. R., Greene, D. N., Woods, K. K., & Matsumura, I. (2006). Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E.coli. Protein Engineering Design and Selection, 19(3), 113-119. Pellicer, M. T., Nunez, M. F., Aguilar, J., Badia, J., & Baldoma, L. (2003). Role of 2-Phosphoglycolate Phosphatase of Escherichia coli in Metabolism of the 2-Phosphoglycolate Formed in DNA Repair. JOURNAL OF BACTERIOLOGY, 185(19), 5815-5821. Peterhansel, C., Krause, K., Braun, H. P., Espie, G. S., Fernie, A. R., Hanson, D. T., Keech, O., Maurino, V. G., Mielewczik, M., & Sage, R. F. (2013). Engineering photorespiration: current state and future possibilities. Plant Biol (Stuttg), 15(4), 754-758. Portis, A. R., Salvucci, M. E., & Ogren, W. L. (1986). Activation of ribulosebisphosphate carboxylase/oxygenase at physiological CO2 and ribulosebisphosphate concentrations by Rubisco activase. Plant Physiology, 82(4), 967-971. Schleif, R. (2000). Regulation of the l-arabinose operon of Escherichia coli Trends in Genetics, 16(12), 559-565. Schwender, J., Goffman, F., Ohlrogge, J. B., & Shachar-Hill, Y. (2004). Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature, 432(7018), 779-782. Shakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A. C., Liu, Z., Otto-Bliesner, B., Schmittner, A., & Bard, E. (2012). Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature, 484(7392), 49-54. Shibata, T., Kawaguchi, S., Hama, Y., Inagaki, M., Yamaguchi, K., & Nakamura, T. (2004). Local and chemical distribution of phlorotannins in brown algae. Journal of applied phycology, 16(4), 291-296. Steen, E. J., Kang, Y., Bokinsky, G., Hu, Z., Schirmer, A., McClure, A., Del Cardayre, S. B., & Keasling, J. D. (2010). Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 463(7280), 559-562. Studier, F. W., & Moffatt, B. A. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. Journal of molecular biology, 189(1), 113-130. Sydney, E. B., Sturm, W., Carvalho, J. C. d., Thomaz-Soccol, V., Larroche, C., Pandey, A., & Soccol, C. R. (2010). Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol, 101(15), 5892-5896. Tabita, F. R., Satagopan, S., Hanson, T. E., Kreel, N. E., & Scott, S. S. (2008). Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. J Exp Bot, 59(7), 1515-1524. Tcherkez, G. G. B., Farquhar, G. D., & Andrews, T. J. (2006). Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proceedings of the National Academy of Sciences, 103(19), 7246-7251. Trueba, F., & Woldringh, C. (1980). Changes in cell diameter during the division cycle of Escherichia coli. Journal of bacteriology, 142(3), 869-878. van der Vies, S. M., Bradley, D., & Gatenby, A. A. (1986). Assembly of cyanobacterial and higher plant ribulose bisphosphate carboxylase subunits into functional homologous and heterologous enzyme molecules in Escherichia coli. The EMBO journal, 5(10), 2439. Wang, B., Li, Y., Wu, N., & Lan, C. Q. (2008). CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol, 79(5), 707-718. Whitney, S. M., & Andrews, T. J. (2001). Plastome-encoded bacterial ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO) supports photosynthesis and growth in tobacco. Proceedings of the National Academy of Sciences, 98(25), 14738-14743. Whitney, S. M., Baldet, P., Hudson, G. S., & Andrews, T. J. (2001). Form I Rubiscos from non‐green algae are expressed abundantly but not assembled in tobacco chloroplasts. The Plant Journal, 26(5), 535-547. Wikipedia. Calvin cycle. Retrieved from Xu, Y., Rosenkranz, S., Weng, C. L., Scharer, J. M., Moo-Young, M., & Chou, C. P. (2006). Characterization of the T7 promoter system for expressing penicillin acylase in Escherichia coli. Appl Microbiol Biotechnol, 72(3), 529-536. Yokozeki, A., Shiflett, M. B., Junk, C. P., Grieco, L. M., & Foo, T. (2008). Physical and Chemical Absorptions of Carbon Dioxide in Room-Temperature Ionic Liquids. J. Phys. Chem. B, 112(51), 16654-16663.
摘要: 由於近百年來大量使用各式石化燃料造成大氣中二氧化碳濃度不斷攀升,若放任大氣中二氧化碳濃度不斷增加,必會對未來造成不可挽救後果。大氣中二氧化碳可藉卡爾文循環中ribulose 1,5-bisphosphate carboxylase/oxygenase(RuBisCO)蛋白而被固定再利用,因此本實驗在大腸桿菌內建立部分卡爾文循環,藉此發展一生物緩解平台基礎,使此平台之基因重組大腸桿菌具備固定自身排放二氧化碳之能力,並經由理論計算,此平台最大可減少40%之二氧化碳排放。在好氧批次培養中,以LB培養基(Luria-Bertani medium)添加20g/L L-arabinose為碳源後,基因重組大腸桿菌之菌體濃度即提升1.26~1.66倍,可達到較高生長水平。而以發酵槽控制pH值為7.0,並以含20g/L L-arabinose之LB培養基進行半厭氧發酵下,再藉由計算L-arabinose消耗量、乙酸乙醇代謝物產量與二氧化碳生產量相互間之分率,如(ethanol + acetic acid)/sugar consumption (mol/mol)、CO2/sugar consumption (mol/mol)分率變化,來比較量基因重組大腸桿菌固定二氧化碳能力。基因重組大腸桿菌與原生大腸桿菌之(ethanol + acetic acid)/sugar consumption (mol/mol)皆接近為0.72,而基因重組大腸桿菌之CO2/sugar consumption (mol/mol)較原生大腸桿菌下降16.2%,而理論最大下降值為40%,經目前實驗基因重組大腸桿菌固定二氧化碳能力以達成理論之40.5%,顯示此生物緩解平台具有以基因重組大腸桿菌固定二氧化碳之潛力。而以NaHCO3、MgSO4、K2HPO4等鹽類作為因子探討在半厭氧批次培養之固碳效率時,可知NaHCO3與MgSO4無法改善固碳效率,但K2HPO4與ATP生成及合成固碳作用之前驅物皆有所相關,故在此可藉K2HPO4改善醣消耗量與固碳效率。
Since all kinds of fossil fuels are currently used on a large-scale, the carbon dioxide concentration in the atmosphere has continued to rise. If this condition cannot be controlled, it will cause irreversible consequences in the future. The carbon dioxide can be fixed and re-used by the 1,5-bisphosphate carboxylase/oxygenase(RuBisCO) protein, which is the key protein in the Calvin cycle. This study utilizes this mechanism to establish part of the Calvin Cycle in E. coli for development of the bio-mitigation platform for carbon dioxide fixation. In theory, this platform can reduce carbon dioxide emissions by 40%. The experimental results indicated that the LB (Luria-Bertani) medium contained 20g/L L-arabionse as a carbon source which in aerobic batch culture, the O.D.600 value of this recombinant E. coli will be 1.26~1.66-flO.D. of the wild type E. coli. This recombinant E. coli can achieve a higher growth level. In the fermentation experiment, the LB medium contained 20g/L L-arabionse and it was used as a carbon source and it had controlled pH value at 7.0 in the semi-anaerobic fermentation. The data of L-arabinose consumption, ethanol accumulation, acetic acid accumulation, and carbon dioxide evolution can be used to calculate for the yield of (ethanol + acetic acid)/sugar consumption (mol/mol) and CO2/sugar consumption (mol/mol). With this information, the carbon dioxide fixation rate of recombinant E. coli can be compared with the wild type. The yield of (ethanol + acetic acid)/sugar consumption (mol/mol) on recombinant and wild type E. coli are both close to 0.72, while the yield of CO2/sugar consumption (mol/mol) on recombinant E. coli is decreased by 16.2% compared to wild type. The theoretical maximum reduced value is 40%. This study achieved 40.5% of theoretical, which indicated the bio-mitigation platform has the potential of carbon dioxide fixation. In order to improve the carbon dioxide fixation efficiency, this study used NaHCO3, MgSO4, K2HPO4 as the factor. The semi-anaerobic batch culture indicated that NaHCO3 and MgSO4 cannot improve the carbon dioxide fixation efficiency. In addition, K2HPO4 related to ATP generation and synthetic precursor of carbon dioxide fixation can enhance the sugar consumption and carbon dioxide fixation efficiency.
其他識別: U0005-1408201315523700
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.