Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3178
標題: 以醱酵策略改善基因重組大腸桿菌及梭狀芽孢桿菌之生質丁醇生產能力
Fermentation approach for enhancing 1-butanol production using recombinant Escherichia coli and Clostridium acetobutylicum ATCC 824
作者: 陳尚楷
Chen, Shang-Kai
關鍵字: 醱酵策略
Fermentation approach
大腸桿菌
正丁醇
OGAB
Clostridium acetobutylicum ATCC 824
孢子體
Acetone-Butanol-Ethanol醱酵
Escherichia coli
n-Butanol
OGAB
Clostridium acetobutylicum ATCC 824
Spore
Acetone-Butanol-Ethanolfermentation
出版社: 化學工程學系所
引用: 李瑞真. 2010. 固定化Clostridium acetobutylicum 進行連續式發酵生產丁醇之研究. 私立東海大學化學工程與材料工程研究所碩士論文. 周世凱, 許梅娟. 2009. 新能源-生物產丁醇. 科學發展, 433, 26-31. 陳勁中, 蔡承佳, 陳寶東. 2011. 生質丁醇生產潛力菌株之篩選. 石油季刊, 49, 85-98. Atsumi, S., Cann, A.F., Connor, M.R., Shen, C.R., Smith, K.M., Brynildsen, M.P., Chou, K.J.Y., Hanai, T., Liao, J.C. 2008a. Metabolic engineering of Escherichia coli for 1-butanol production. Metabolic Engineering, 10, 305-311. Atsumi, S., Hanai, T., Liao, J.C. 2008b. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86-89. Bahl, H., Andersch, W., Braun, K., Gottschalk, G. 1982a. Effect of pH and butyrate concentration on the production of acetone and butanol by Clostridium acetobutylicum grown in continuous culture. Journal of Applied Microbiology and Biotechnology, 14, 17-20. Bahl, H., Andersch, W., Konstantin Braun, Gottschalk, G. 1982b. Effect of pH and butyrate concentration on the production of acetone and butanol by Clostridium acetobutylicum grown in continuous culture. Applied microbiology and Biotechnology, 14(1), 17-20. Bahl, H., Gottwald, M., A. Kuhn, V.R., Andersch, W., Gottschalk, G. 1986. Nutritional Factors Affecting the Ratio of Solvents Produced by Clostridium acetobutylicum. Applied and Environmental Microbiology, 52( 169-172). Berezina, O.V., Zakharova, N.V., Brandt, A., Yarotsky, S.V., Schwarz, W.H., Zverlov, V.V. 2010. Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Applied Microbiology and Biotechnology, 87(2), 635-646. Bond-Watts, B.B., Bellerose, R.J., Chang, M.C.Y. 2011. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nature Chemical Biology 7, 222-227. Bunch, P.K., Mat-Jan, F., Lee, N., Clark, D.P. 1996. The IdhA Gene Encoding the Fermentative Lactate Dehydrogenase of Escherichia Coli. Microbiology, 143, 187-195. Chen, J.-S. 1995. Alcohol dehydrogenase: multiplicity and relatedness in the solvent-producing clostridia. FEMS Microbiol. Rev., 17, 263-273 Cheng, C.-L., Che, P.-Y., Chen, B.-Y., Lee, W.-J., Chien, L.-J., Chang, J.-S. 2012. High yield bio-butanol production by solvent-producing bacterial microflora. Bioresource Technology, 113, 58-64. Chohnan, S., Furukawa, H., Fujio, T., Nishihara, H., Takamura, Y. 1997. Changes in the size and composition of intracellular pools of nonesterified coenzyme A and coenzyme A thioesters in aerobic and facultatively anaerobic bacteria. Appl Environ Microbiol, 63, 553-560. Collas, F., Kuit, W., Clement, B., Marchal, R., Lopez-Contreras, A.M., Monot, F. 2012. Simultaneous production of isopropanol, butanol,ethanol and 2,3-butanediol by Clostridium acetobutylicum ATCC 824 engineered strains. AMB Express 2:45. CORNILLOT, E., NAIR, R.V., PAPOUTSAKIS, E.T., SOUCAILLE1, P. 1997. The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain. J. Bacteriol, 179, 5442-5447. de Graef, M.R., Alexeeva, S., Snoep, J.L., Teixeira de Mattos, M.J. 1999. The Steady-State Internal Redox State (NADH/NAD) Reflects the External Redox State and Is Correlated with Catabolic Adaptation in Escherichia coli. Journal of Bacteriology, 181, 2351-2357. Dellomonaco, C., Clomburg, J.M., Miller, E.N., Gonzalez, R. 2011. Engineered reversal of the bgr]-oxidation cycle for the synthesis of fuels and chemicals. Nature 476, 355–359. Duncan, C.L., Strong, D.H. 1968. Improved Medium for Sporulation of Clostridium perfringens. Appl. Environ. Microbiol., 16, 82-89. Evans, P.J., Wang, H.Y. 1988. Enhancement of Butanol Formation by Clostridium acetobutylicum in the Presence of Decanol-Oleyl Alcohol Mixed Extractants. Appl. Environ. Microbiol., 54, 1662-1667. Ezeji, T.C., Qureshi, N., Blaschek, H.P. 2004. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. 63, 653-658. Ezeji, T.C., Qureshi, N., Blaschek, H.P. 2003. Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. Microbiology and Biotechnology, 19, 595-603. Formanek, J., Mackie, R., Blaschek, H.P. 1997. Enhanced Butanol Production by Clostridium beijerinckii BA101 Grown in Semidefined P2 Medium Containing 6 Percent Maltodextrin or Glucose. Appl Environ Microbiol. , 63, 2306-2310. Gao, K., Li, Y., Tian, S., Yang, X. 2012. Screening and characteristics of a butanol-tolerant strain and butanol production from enzymatic hydrolysate of NaOH-pretreated corn stover. Journal of microbiology & biotechnology, 28, 2963–2971. Garza, E., Zhao, J., Wang, Y., Wang, J., Iverson, A., Manow, R., Finan, C., Zhou, S. 2012. Engineering a homobutanol fermentation pathway in Escherichia coli EG03. Journal of Industrial Microbiology & Biotechnology, 39, 1101-1107. Gottschal, J.C., Morris, J.G. 1981. The induction of acetone and butanol production in cultures of Clostridium acetobutylicum by elevated concentrations of acetate and butyrate. FEMS Microbiology Letters, 12, 385–389. Gu, Y., Li, J., Zhang, L., Chen, J., Niu, L., Yang, Y., Yang, S., Jiang, W. 2009. Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli. Journal of Biotechnology, 143, 284–287. Han, B., Ujor, V., Lai, L.B., Gopalan, V., Ezeji, T.C. 2013. Use of Proteomic Analysis To Elucidate the Role of Calcium in Acetone-Butanol-Ethanol Fermentation by Clostridium beijerinckii NCIMB 8052. Appl. Environ. Microbiol., 79, 282-293. Harris, L.M., Welker, N.E., Papoutsakis, E.T. 2002. Northern, morphological,and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC824. J. Bacteriol., 184, 3586-3597. Hsu, E.J., Hsu, J.F., Landuyt, S.L., Chao, H.-S., Liu, H.-S. 2009. Semi-continuous propagation and synchronous differentiation of hyper-solventogenic cells of Clostridium thermosaccharolyticum in a xylan medium at 56 °C. Journal of the Taiwan Institute of Chemical Engineers, 40, 349–358. HSU, E.J., ORDAL, Z.J. 1969. Sporulation of Clostridium thermosaccharolyticum. APPLIED MICROBIOLOGY, 958-960. Huang, W.-C., Ramey, D.E., Yang, S.-T. 2004. Continuous Production of Butanol by Clostridium acetobutylicum Immobilized in a Fibrous Bed Bioreactor. Appl Biochem Biotechnol, 113, 887-898. Inui, M., Suda, M., Kimur, S., , K.Y., Suzuki, H., Toda, H., Yamamoto, S., Okino, S., Suzuki, N., Yukawa, H. 2008. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Applied Microbiology and Biotechnology, 77(6), 1305-1316. Jones, D.T., Westhuizen, A.V.D., Long, S., Allcock, E.R., Reid, S.J., Woods, D.R. 1982. Solvent Production and Morphological Changes in Clostridium acetobutylicum. Appl. Environ. Microbiol., 43, 1434-1439. Jones, D.T., Woods, D.R. 1986. Acetone-butanol fermentation revisited. Microbiol. Mol. Biol, 50(4), 484–524. Kanouni, A.E., Zerdani, I., Zaafa, S., Znassni, M., Loutfi, M., Boudouma, M. 1998. The improvement of glucose/xylose fermentation by Clostridium acetobutylicum using calcium carbonate. Microbiology and Biotechnology, 14(3), 431-435. Lutgens, M., Gottschalk, G. 1980. Why a co-substrate is required for anaerobic growth of Escherichia coli on citrate. Journal of General Microbiology, 119(1), 63-70. Landuyt, S.L., Hsu, E.J. 1992a. Preparation of Refractile Spores of Clostridium thermosaccharolyticum Involves a Solventogenic Phase. Appl. Environ. Microbiol., 58, 1797-1800. LANDUYT, S.L., HSU, E.J. 1992b. Preparation of Refractile Spores of Clostridium thermosaccharolyticum Involves a Solventogenic Phase. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 58, 1797-1800. Lee, J., Janga, Y.-S., Choi, u.J., Im, J.A., Song, H., Cho, J.H., Seung, D.Y., Papoutsakis, E.T., Bennett, G.N., Lee, S.Y. 2012. Metabolic Engineering of Clostridium acetobutylicum ATCC 824 for Isopropanol-Butanol-Ethanol Fermentation. Appl. Environ. Microbiol., 78, 1416-1423. Lee, S.Y., Park, J.H., Jang, S.H., Nielsen, L.K., Kim, J., Jung, K.S. 2008. Fermentative butanol production by clostridia. Biotechnology and Bioengineering, 101(2), 209-228. Leonardo, M.R., Dailly, Y., Clark, D.P. 1996. Role of NAD in regulating the adhE gene of Escherichia coli. Journal of Bacteriology, 178, 6013-6018. Li, F., Hinderberger, J., Seedorf, H., Zhang, J., Buckel, W., Thauer, R.K. 2008. Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from Clostridium kluyveri. Journal of Bacteriology, 190, 843-850. Li, S.-Y., Srivastava, R., Suib, S.L., Li, Y., Parnasa, R.S. 2011. Performance of batch, fed-batch, and continuous A–B–E fermentation with pH-control. Bioresour. Technol, 102(5), 4241-4250. Lin, K.H., Chin, W.C., Lee, A.H., Huang, C.C. 2011. Genetic improvement of butanol tolerance in Escherichia coli by cell surface expression of fish metallothionein. Bioengineered, 2, 55-57. Lin, Y.-L., Blaschek, H.P. 1983. Butanol Production by a Butanol-Tolerant Strain of Clostridium acetobutylicum in Extruded Corn Broth. Appl. Environ. Microbiol., 5, 966-973. Linden, J.C., Paige., M.R., Doremus, M.D. 1984. Fed-batch fermentations of Clostridium acetobutylicum. Presented at the AIChE National Meeting, San Francisco, CA,November 27. Long, S., Jones, D.T., Woods, D.R. 1983. Sporulation of Clostridium acetobutylicum P262 in a Defined Medium. Appl Environ Microbiol. , 45, 1389-1393. Mermelstein, L.D., Papoutsakis, E.T., Petersent, D.J., Bennett, G.N. 1993. Met a bo I ic Engineering of Clostridium acetobutylicum ATCC 824 for Increased Solvent Production by Enhancement of Acetone Formation Enzyme Activities Using a Synthetic Acetone Operon. Biotechnology and Bioengineering,, 42, 1053-1060 Miller, G.L. 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. , 31, 426-428. Monot, F., Martin, J.-R., Petitdemange, H., Gay, R. 1982. Acetone and Butanol Production by Clostridium acetobutylicum in a Synthetic Medium. Appl. Environ. Microbiol., 44, 1318-1324. Moon, C., Lee, C.H., Sang, B.-I., Um, Y. 2011. Optimization of medium compositions favoring butanol and 1,3-propanediol production from glycerol by Clostridium pasteurianum. Bioresource Technology, 102(22), 10561–10568. Nabais, R.C., Sa-Correia, I., Viegas, C.A., Novais, J.M. 1988. Influence of Calcium Ion on Ethanol Tolerance of Saccharomyces bayanus and Alcoholic Fermentation by Yeasts. Appl. Environ. Microbiol., 54, 2439-2446. Nielsen, D.R., Leonard, E., Yoon, S.-H., Tseng, H.-C., Yuan, C., Prather, K.L.J. 2009. Engineering alternative butanol production platforms in heterologous bacteria. Metabolic Engineering, 11, 262–273. Nishizaki, T., Tsuge, K., Itaya, M., Doi, N., Yanagawa, H. 2007. Metabolic Engineering of Carotenoid Biosynthesis in Escherichia coli by Ordered Gene Assembly in Bacillus subtilis. Applied and Environmental Microbiology, 73, 1355-1361. Parekh, M., Formanek, J., Blaschek, H.P. 1999. Pilot-scale production of butanol by Clostridium beijerinckii BA101 using a low-cost fermentation medium based on corn steep water. Applied Microbiology and Biotechnology, 51, 152-157. Qureshi, N., Blaschek, H. 1999a. Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation. Biotechnol Prog., 15, 594-602. Qureshi, N., Blaschek, H.P. 2000. Butanol Production Using Clostridium beijerinckii BA101 Hyper-Butanol Producing Mutant Strain and Recovery by Pervaporation. Applied Biochemistry and Biotechnology, 225-235. Qureshi, N., Blaschek, H.P. 1999b. Production of Acetone Butanol Ethanol (ABE) by a Hyper-Producing Mutant Strain of Clostridium beijerinckii BA101 and Recovery by Pervaporation. Biotechnol. Prog. , 15, 594-602. Qureshi, N., Saha, B.C., Cotta, M.A. 2007. Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess and Biosystems Engineering, 30, 419-427. Qureshi, N., Saha, B.C., Hector, R.E., Hughes, S.R., Cotta, M.A. 2008. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I—Batch fermentation. Biomass and Bioenergy, 32(2), 168-175. Ren, C., Gu, Y., Hu, S., Wu, Y., Wang, P., Yang, Y., Yang, C., Yang, S., Jiang, W. 2010. Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum. Metabolic Engineering, 12, 446–454. Richmond, C., Han, B., Ezeji, T.C. 2011. Stimulatory effects of calcium carbonate on butanol production by solventogenic Clostridium species. Continental Journal of Microbiology 5, 18-28. Ritz, D., Beckwith, J. 2001. ROLES OF THIOL-REDOX PATHWAYS IN BACTERIA. Annual Review of Microbiology, 55, 21-48. San, K.-Y., Bennett, G.N., Berrı́os-River, S.J., Vadali, R.V., Yang, Y.-T., Horton, E., Rudolph, F.B., Sariyar, B., Blackwood, K. 2004. Metabolic Engineering through Cofactor Manipulation and Its Effects on Metabolic Flux Redistribution in Escherichia coli. Metabolic Engineering, 4(2), 182-192. Sandhya, C., Sumantha, A., Szakacs, G., Pandey, A. 2005. Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochemistry, 40, 2689–2694. Schafer, F.Q., Buettner, G.R. 2001. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology and Medicine, 30(11), 1191–1212. Schmidt, M., Weuster-Botz, D. 2012. Reaction engineering studies of acetone-butanol-ethanol fermentation with Clostridium acetobutylicum. Biotechnology Journal, 7(5), 656–661. Shen, C.R., Lan, E.I., Dekishima, Y., Baez, A., Cho, K.M., Liao, J.C. 2011. Driving Forces Enable High-Titer Anaerobic 1-Butanol Synthesis in Escherichia coli. Appl. Environ. Microbiol., 77, 2905-2915. Sillers, R., Al-Hinai, M.A., Papoutsakis, E.T. 2009. Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations. Biotechnol. Bioeng., 102, 38-49. Steen, E.J., Chan, R., Prasad, N., Myers1, S., Petzold, C.J., Redding, A., Ouellet, M., Keasling, J.D. 2008. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microbial Cell Factories, 7, 36. Tashiro, Y., Takeda, K., Kobayashi, G., Sonomoto, K., Ishizaki, A., Yoshino, S. 2004. High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. Journal of Bioscience and Bioengineering, 98, 263–268. Taya, M., Ishii, S., Kobayashi, T. 1985. Monitoring and control for extractive fermentation of Clostridium acetobutylicum. Journal of fermentation technology 63, 181-187. Trinh, C.T. 2012. Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production. Applied Microbiology and Biotechnology, 95(4), 1083-1094. Tsuge, K., Matsui, K., Itaya, M. 2003. One step assembly of multiple DNA fragments with a designed order and orientation in Bacillus subtilis plasmid. Nucleic Acids Research, 31(21). Wang, S., Zhu, Y., Zhang, Y., Li, Y. 2012. Controlling the oxidoreduction potential of the culture of Clostridium acetobutylicum leads to an earlier initiation of solventogenesis, thus increasing solvent productivity. Appl Microbiol Biotechnol. , 93, 1021 – 1030. Woods, D.R., Jones, D.T. 1986. Physiological responses of Bacteroides and Clostridium strains to environmental stress factors. Adv Microb Physiol. , 28, 1-64. Xiao, H., Gu, Y., Ning, Y., Yang, Y., Mitchell, W.J., Jiang, W., Yang, S. 2011. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. Appl Environ Microbiol., 22, 7886–7895. Xu, J., Wang, L., Ridgway, D., Gu, T., Moo-Young, M. 2000. Increased Heterologous Protein Production in Aspergillusniger Fermentation through Extracellular Proteases Inhibition by Pelleted Growth. Biotechnology Progress, 16, 222–227. Xue, C., Zhao, J., Lu, C., Yang, S.-T., Bai, F., Tang, I.-C. 2012. High-titer n-butanol production by clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping. Biotechnol Bioeng., 109, 2746-2756. Yen, H.-W., Li, R.-J. 2012. The effects of dilution rate and glucose concentration on continuous acetone–butanol–ethanol fermentation by Clostridium acetobutylicum immobilized on bricks. Journal of Chemical Technology and Biotechnology, 86, 1399-1404. Yen, H.-W., Li, R.-J., Ma, T.-W. 2011. The development process for a continuous acetone–butanol–ethanol (ABE) fermentation by immobilized Clostridium acetobutylicum. Journal of the Taiwan Institute of Chemical Engineers, 42, 902–907. Yusof, S., MS, M.T., Amir, A., Kadhum, H., Mohammad, A., Jahim, J. 2010. The effect of initial butyric acid addition on ABE fermentation by C. acetobutylicum NCIMB 619. Journal of Sciences, 10, 2709-2712. Zeng, Y., Wei, N., Lou, M., Fu, L., Xiong, P., Wang, H. 2010. Calcium chloride improve ethanol production in recombinant Zymomonas mobilis. African Journal of Biotechnology, 9, 7687-7691. Zhang, Y., Han, B., Ezeji, T.C. 2012. Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation. New Biotechnology, 29, 345–351. Zhao, Y., Tomas, C.A., Rudolph, F.B., Papoutsakis, E.T., Bennett, G.N. 2005. Intracellular Butyryl Phosphate and Acetyl Phosphate Concentrations in Clostridium acetobutylicum and Their Implications for Solvent Formation. Appl. Environ. Microbiol., 71, 530-537.
摘要: 本研究主要在探討利用不同醱酵策略,進而改善微生物代謝生產生質丁醇的能力。本研究可分為兩部分,其一為:利用經Ordered Gene Assembly in Bacillus subtilis(OGAB)基因工程方法構築之大腸桿菌(E. coli T5),測試其生質丁醇產能表現,並加以改善。實驗結果顯示,大腸桿菌利用外源植入丁醇代謝路徑;(Promoter Pr)-thil-crt-bcd-etfB-etfA-hbd-adhe1-adhe;以Terrific Broth Modified medium加上20 g/L 葡萄糖,於72小時厭氧環境培養下,其丁醇產量與Specific BuOH yield分別為4.5 mg-butanol/L 和 4.5 mg-butanol/g-cell,並藉由不同醱酵參數的設計,探討E. coli T5在不同條件下丁醇生產的能力表現及生理現象。實驗結果指出,在碳源低初始濃度、選擇具較佳還原力的碳源種類、厭氧環境、酸鹼值為6 或加入glutathione,citrate 的條件下均能有效地增加生質丁醇產量,從中,本研究結果推論acetyl-CoA 胞內濃度和細胞內低氧化還原態為E. coli T5丁醇生產重要的關鍵。其二則為以孢子型態保存之原生菌種梭狀芽孢桿菌(Clostridium acetobutylicum ATCC 824)直接進行Acetone-Butamol-Ethanol醱酵(spore-culture),測試其程序可行性,實驗結果顯示,當以LB-F培養基與60 g/L 葡萄糖,且植菌量比例為10.71 %(V/V),經72小時spore-culture批次醱酵,可得丁醇產量12.65±0.85 g-butanol/L、 butanol yield, 0.22±0.02 g-butanol/g-glucose 和butanol productivity, 0.18±0.01 g-butanol/L/h,輔以不同醱酵條件(植菌量比例、初始葡萄糖濃度、Ca+2濃度)的測試探討,發現其最大丁醇產量大都介於10.5-12.5 g-butanol/L,其中,若以100 g/L 葡萄糖進行spore-culture醱酵,可得butanol titer 14.05±0.96 g-butanol/L 、butanol yield 0.23±0.01 g-butanol/g-glucose、butanol productivity 0.20±0.01 g-butanol/L/h 與total A-B-E titer 25.99±1.86 g-ABE/L、total A-B-E yield 0.43±0.01 g-ABE/g-glucose、total A-B-E productivity 0.36±0.03 g-ABE/L/h。
In this study, different fermentation approaches were applied for improving the bio-butanol producing ability of microorganisms. This research can be divided into two parts. One is:Engineered butanologenic Escherichia coli T5 constructed by the OGAB method was used for 1-butanol production. The results showed the feasibility of the artificial butanologenic operon, (Promoter Pr)-thil-crt-bcd-etfB-etfA-hbd-adhe1-adhe, where the 1-butanol titer, specific BuOH yield, and BuOH yield were 4.50 mg/L, 4.50 mg-BuOH/g cell, and 0.35 mg-BuOH/g-glucose, respectively. Fermentation conditions of anaerobic, low initial concentrations of carbon sources, low oxidation state of carbon source, pH of 6, addition of glutathione and citrate, had been shown for efficiently improving the 1-butanol production. The premise behind these fermentation approaches can be categorized into two lines of reasoning, either elevated the availability of acetyl-CoA or lowered the intracellular redox state. By comparing the fermentation conditions tested in this study, pH has been shown to be the most efficiency strategies for 1-butanol production while the replacement of glucose with glycerol provides the highest improvement in butanol yield. The other was using spore-form Clostridium acetobutylicum ATCC 824 for Acetone-Butanol-Ethanol fermentation directally. This kind of fermentation method called “spore-culture”. The results shows the feasibility of spore-culture process where the 1-butanol titer, butanol yield and butanol productivity were 12.65±0.85 g-butanol/L, 0.22±0.02 g-butanol/g-glucose, and 0.18±0.01 g-butanol/L/h, respectively. However, the max 1-butanol titer was 10.5-12.5 g-butanol/L through different fermentation conditions testing, like the inoculum level of spores, the initial glucose concentration used, and the concentration of calcium ion used. Among the fermentation conditions tesing, it could produce 14.687±1.744 g-butanol /L while using 100 g/L Glucose as the carbon source. Another spore-culture fermentation results by using 100 g/L glucose were butanol yield, 0.23±0.01 g-butanol/g-glucose; butanol productivity, 0.20±0.01 g-butanol/L/h; total A-B-E titer, 25.99±1.86 g-ABE/L; total A-B-E yield, 0.43±0.01 g-ABE/g-glucose; and total A-B-E productivity, 0.36±0.03 g-ABE/L/h, respectively. By comparing the fermentation performance between spore-culture method and traditional culture method, spore-culture method has been showed the high potential for Acetone-Butanol-Ethanol fermentation process. 
URI: http://hdl.handle.net/11455/3178
其他識別: U0005-0108201309151600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0108201309151600
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.