Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3179
標題: 以金屬及塑膠製備染料敏化太陽能電池光電極材之研究與應用
The Research and Application of Metal and Plastic Substrates as Photoelectrode in Dye Sensitized Solar Cells
作者: 黃榆婷
Huang, Yu-Ting
關鍵字: 染料敏化太陽能電池
Polyimide
鎳金屬片
PI膜
光電極
nickel foil
Dye-sensitized Solar Cell
DSSC
photoanode
出版社: 化學工程學系所
引用: [1] M. Gratzel, "Photoelectrochemical Cells", Nature, Vol.414 (6861), pp. 338-344 (2001). [2] B. O''Regan and M. Gratzel, "A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal Tio2 Films", Nature, Vol.353 (6346), pp. 737-740 (1991). [3] M. K. Nazeeruddin, E. Baranoff, and M. Gratzel, "Dye-Sensitized Solar Cells: A Brief Overview", Solar Energy, Vol.85 (6), pp. 1172-1178 (2011). [4] G. P. Smestad and M. Gratzel, "Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter", Journal of Chemical Education, Vol.75 (6), pp. 752-756 (1998). [5] D. Cahen, G. Hodes, M. Gratzel, J. F. Guillemoles, and I. Riess, "Nature of Photovoltaic Action in Dye-Sensitized Solar Cells", The Journal of Physical Chemistry B, Vol.104 (9), pp. 2053-2059 (2000). [6] 孟庆波、林原、戴松元, "染料敏化纳米晶薄膜太阳电池", 物理 Vol.33 (3), pp. 177-181 (2004). [7] M. Shanmugam, B. Bills, M. F. Baroughi, and D. Galipeau, "Analysis of Carrier Transport in Dye Sensitized Solar Cells Using Temperature Dependent Dark I-V Measurements", Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE, pp. 001992-001994 (2009). [8] C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Pena, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, "A Gaas Solar Cell with an Efficiency of 26.2% at 1000 Suns and 25.0% at 2000 Suns", Electron Devices, IEEE Transactions on, Vol.48 (5), pp. 840-844 (2001). [9] Y.-S. Hsiao, W.-T. Whang, S.-C. Wu, and K.-R. Chuang, "Chemical Formation of Palladium-Free Surface-Nickelized Polyimide Film for Flexible Electronics", Thin Solid Films, Vol.516 (12), pp. 4258-4266 (2008). [10] Y.-S. Hsiao, C.-P. Chen, C.-H. Chao, and W.-T. Whang, "All-Solution-Processed Inverted Polymer Solar Cells on Granular Surface-Nickelized Polyimide", Organic Electronics, Vol.10 (4), pp. 551-561 (2009). [11] H. Lindstrom, A. Holmberg, E. Magnusson, L. Malmqvist, and A. Hagfeldt, "A New Method to Make Dye-Sensitized Nanocrystalline Solar Cells at Room Temperature", Journal of Photochemistry and Photobiology A: Chemistry, Vol.145 (1), pp. 107-112 (2001). [12] D. Zhang, T. Yoshida, K. Furuta, and H. Minoura, "Hydrothermal Preparation of Porous Nano-Crystalline Tio2 Electrodes for Flexible Solar Cells", Journal of Photochemistry and Photobiology A: Chemistry, Vol.164 (1–3), pp. 159-166 (2004). [13] C. Longo, J. Freitas, and M. A. De Paoli, "Performance and Stability of Tio2/Dye Solar Cells Assembled with Flexible Electrodes and a Polymer Electrolyte", Journal of Photochemistry and Photobiology A: Chemistry, Vol.159 (1), pp. 33-39 (2003). [14] J. H. Yum, S. S. Kim, D. Y. Kim, and Y. E. Sung, "Electrophoretically Deposited Tio2 Photo-Electrodes for Use in Flexible Dye-Sensitized Solar Cells", Journal of Photochemistry and Photobiology A: Chemistry, Vol.173 (1), pp. 1-6 (2005). [15] A. D. Pasquier, "An Approach to Laminated Flexible Dye Sensitized Solar Cells", Electrochimica Acta, Vol.52 (26), pp. 7469-7474 (2007). [16] J. Nemoto, M. Sakata, T. Hoshi, H. Ueno, and M. Kaneko, "All-Plastic Dye-Sensitized Solar Cell Using a Polysaccharide Film Containing Excess Redox Electrolyte Solution", Journal of Electroanalytical Chemistry, Vol.599 (1), pp. 23-30 (2007). [17] X. Li, H. Lin, J. Li, N. Wang, C. Lin, and L. Zhang, "Chemical Sintering of Graded Tio2 Film at Low-Temperature for Flexible Dye-Sensitized Solar Cells", Journal of Photochemistry and Photobiology A: Chemistry, Vol.195 (2–3), pp. 247-253 (2008). [18] H. W. Chen, C. Y. Hsu, J. G. Chen, K. M. Lee, C. C. Wang, K. C. Huang, and K. C. Ho, "Plastic Dye-Sensitized Photo-Supercapacitor Using Electrophoretic Deposition and Compression Methods", Journal of Power Sources, Vol.195 (18), pp. 6225-6231 (2010). [19] T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, and H. Arakawa, "Highly Efficient Plastic-Substrate Dye-Sensitized Solar Cells with Validated Conversion Efficiency of 7.6%", Solar Energy Materials and Solar Cells, Vol.94 (5), pp. 812-816 (2010). [20] Y. Xiao, J. Wu, G. Yue, G. Xie, J. Lin, and M. Huang, "The Preparation of Titania Nanotubes and Its Application in Flexible Dye-Sensitized Solar Cells", Electrochimica Acta, Vol.55 (15), pp. 4573-4578 (2010). [21] S. Peng, Y. Wu, P. Zhu, V. Thavasi, S. G. Mhaisalkar, and S. Ramakrishna, "Facile Fabrication of Polypyrrole/Functionalized Multiwalled Carbon Nanotubes Composite as Counter Electrodes in Low-Cost Dye-Sensitized Solar Cells", Journal of Photochemistry and Photobiology A: Chemistry, Vol.223 (2–3), pp. 97-102 (2011). [22] K. M. Lee, Y. C. Hsu, M. Ikegami, T. Miyasaka, K. R. Justin Thomas, J. T. Lin, and K. C. Ho, "Co-Sensitization Promoted Light Harvesting for Plastic Dye-Sensitized Solar Cells", Journal of Power Sources, Vol.196 (4), pp. 2416-2421 (2011). [23] H. W. Chen, C. Y. Lin, Y. H. Lai, J. G. Chen, C. C. Wang, C. W. Hu, C. Y. Hsu, R. Vittal, and K. C. Ho, "Electrophoretic Deposition of Zno Film and Its Compression for a Plastic Based Flexible Dye-Sensitized Solar Cell", Journal of Power Sources, Vol.196 (10), pp. 4859-4864 (2011). [24] M. G. Kang, N. G. Park, K. S. Ryu, S. H. Chang, and K. J. Kim, "Flexible Metallic Substrates for Tio2 Film of Dye-Sensitized Solar Cells", Chemistry Letters, Vol.34 (6), pp. 804-805 (2005). [25] M. G. Kang, N. G. Park, K. S. Ryu, S. H. Chang, and K. J. Kim, "A 4.2% Efficient Flexible Dye-Sensitized Tio2 Solar Cells Using Stainless Steel Substrate", Solar Energy Materials and Solar Cells, Vol.90 (5), pp. 574-581 (2006). [26] Y. Jun and M. G. Kang, "The Characterization of Nanocrystalline Dye-Sensitized Solar Cells with Flexible Metal Substrates by Electrochemical Impedance Spectroscopy", Journal of The Electrochemical Society, Vol.154 (1), pp. B68-B71 (2007). [27] Y. Jun, J. Kim, and M. G. Kang, "A Study of Stainless Steel-Based Dye-Sensitized Solar Cells and Modules", Solar Energy Materials and Solar Cells, Vol.91 (9), pp. 779-784 (2007). [28] J. H. Park, Y. Jun, H. G. Yun, S. Y. Lee, and M. G. Kang, "Fabrication of an Efficient Dye-Sensitized Solar Cell with Stainless Steel Substrate", Journal of The Electrochemical Society, Vol.155 (7), pp. F145-F149 (2008). [29] H.-G. Yun, Y. Jun, J. Kim, B.-S. Bae, and M. G. Kang, "Effect of Increased Surface Area of Stainless Steel Substrates on the Efficiency of Dye-Sensitized Solar Cells", Applied Physics Letters, Vol.93 (13), pp. 133311-133311-133313 (2008). [30] N. Vlachopoulos, P. Liska, J. Augustynski, and M. Graetzel, "Very Efficient Visible Light Energy Harvesting and Conversion by Spectral Sensitization of High Surface Area Polycrystalline Titanium Dioxide Films", Journal of the American Chemical Society, Vol.110 (4), pp. 1216-1220 (1988). [31] K. Fan, T. Peng, B. Chai, J. Chen, and K. Dai, "Fabrication and Photoelectrochemical Properties of Tio2 Films on Ti Substrate for Flexible Dye-Sensitized Solar Cells", Electrochimica Acta, Vol.55 (18), pp. 5239-5244 (2010). [32] S. Ito, N.-L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin, and M. Gratzel, "High-Efficiency (7.2%) Flexible Dye-Sensitized Solar Cells with Ti-Metal Substrate for Nanocrystalline-Tio2 Photoanode", Chemical Communications (38), pp. 4004-4006 (2006). [33] W. Tan, X. Yin, X. Zhou, J. Zhang, X. Xiao, and Y. Lin, "Electrophoretic Deposition of Nanocrystalline Tio2 Films on Ti Substrates for Use in Flexible Dye-Sensitized Solar Cells", Electrochimica Acta, Vol.54 (19), pp. 4467-4472 (2009). [34] D. Kim, K. Lee, P. Roy, B. I. Birajdar, E. Spiecker, and P. Schmuki, "Formation of a Non-Thickness-Limited Titanium Dioxide Mesosponge and Its Use in Dye-Sensitized Solar Cells", Angewandte Chemie, Vol.121 (49), pp. 9490-9493 (2009). [35] T.-Y. Tsai, C.-M. Chen, S.-J. Cherng, and S.-Y. Suen, "An Efficient Titanium-Based Photoanode for Dye-Sensitized Solar Cell under Back-Side Illumination", Progress in Photovoltaics: Research and Applications, pp. (2011). [36] T. Ma, X. Fang, M. Akiyama, K. Inoue, H. Noma, and E. Abe, "Properties of Several Types of Novel Counter Electrodes for Dye-Sensitized Solar Cells", Journal of Electroanalytical Chemistry, Vol.574 (1), pp. 77-83 (2004). [37] C. M. Chen, C. H. Chen, and T. C. Wei, "Chemical Deposition of Platinum on Metallic Sheets as Counterelectrodes for Dye-Sensitized Solar Cells", Electrochimica Acta, Vol.55 (5), pp. 1687-1695 (2010). [38] E. L. Miller and R. E. Rocheleau, "Electrochemical and Electrochromic Behavior of Reactively Sputtered Nickel Oxide", Journal of The Electrochemical Society, Vol.144 (6), pp. 1995-2003 (1997). [39] M. Zhou, W. Y. Lin, N. R. de Tacconi, and K. Rajeshwar, "Metal/Semiconductor Electrocomposite Photoelectrodes: Behavior of Ni/Tio2 Photoanodes and Comparison of Photoactivity of Anatase and Rutile Modifications", Journal of Electroanalytical Chemistry, Vol.402 (1–2), pp. 221-224 (1996). [40] S. Spanou, E. A. Pavlatou, and N. Spyrellis, "Ni/Nano-Tio2 Composite Electrodeposits: Textural and Structural Modifications", Electrochimica Acta, Vol.54 (9), pp. 2547-2555 (2009). [41] W. Chen, Y. He, and W. Gao, "Electrodeposition of Sol-Enhanced Nanostructured Ni-Tio2 Composite Coatings", Surface and Coatings Technology, Vol.204 (15), pp. 2487-2492 (2010). [42] 蔡婷雅, 以鈦為光電極基材之染料敏化太陽能電池之研發, 中興大學,化學工程學系所, 2011. [43] K. Onoda, S. Ngamsinlapasathian, T. Fujieda, and S. Yoshikawa, "The Superiority of Ti Plate as the Substrate of Dye-Sensitized Solar Cells", Solar Energy Materials and Solar Cells, Vol.91 (13), pp. 1176-1181 (2007). [44] L. Y. Lin, C. P. Lee, R. Vittal, and K. C. Ho, "Selective Conditions for the Fabrication of a Flexible Dye-Sensitized Solar Cell with Ti/Tio2 Photoanode", Journal of Power Sources, Vol.195 (13), pp. 4344-4349 (2010). [45] L. Chen, W. Tan, J. Zhang, X. Zhou, X. Zhang, and Y. Lin, "Fabrication of High Performance Pt Counter Electrodes on Conductive Plastic Substrate for Flexible Dye-Sensitized Solar Cells", Electrochimica Acta, Vol.55 (11), pp. 3721-3726 (2010). [46] D. Kim, P. Roy, K. Lee, and P. Schmuki, "Dye-Sensitized Solar Cells Using Anodic Tio2 Mesosponge: Improved Efficiency by Ticl4 Treatment", Electrochemistry Communications, Vol.12 (4), pp. 574-578 (2010). [47] H. W. Chen, K. C. Huang, C. Y. Hsu, C. Y. Lin, J. G. Chen, C. P. Lee, L. Y. Lin, R. Vittal, and K. C. Ho, "Electrophoretic Deposition of Tio2 Film on Titanium Foil for a Flexible Dye-Sensitized Solar Cell", Electrochimica Acta, Vol.56 (23), pp. 7991-7998 (2011). [48] D. T. Cromer and K. Herrington, "The Structures of Anatase and Rutile", Journal of the American Chemical Society, Vol.77 (18), pp. 4708-4709 (1955). [49] K. Kalyanasundaram and M. Gratzel, "Applications of Functionalized Transition Metal Complexes in Photonic and Optoelectronic Devices", Coordination Chemistry Reviews, Vol.177 (1), pp. 347-414 (1998). [50] J. Chae and M. Kang, "Cubic Titanium Dioxide Photoanode for Dye-Sensitized Solar Cells", Journal of Power Sources, Vol.196 (8), pp. 4143-4151 (2011). [51] A. Hironori, Y. Takeshi, T. Akihito, and A. Shinya, presented at the Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, 2006 (unpublished). [52] S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, "Influence of Scattering Layers on Efficiency of Dye-Sensitized Solar Cells", Solar Energy Materials and Solar Cells, Vol.90 (9), pp. 1176-1188 (2006). [53] Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, "Significant Influence of Tio2 Photoelectrode Morphology on the Energy Conversion Efficiency of N719 Dye-Sensitized Solar Cell", Coordination Chemistry Reviews, Vol.248 (13–14), pp. 1381-1389 (2004). [54] K. M. Lee, V. Suryanarayanan, and K. C. Ho, "A Study on the Electron Transport Properties of Tio2 Electrodes in Dye-Sensitized Solar Cells", Solar Energy Materials and Solar Cells, Vol.91 (15–16), pp. 1416-1420 (2007). [55] D. N. Srivastava, S. Chappel, O. Palchik, A. Zaban, and A. Gedanken, "Sonochemical Synthesis of Mesoporous Tin Oxide", Langmuir, Vol.18 (10), pp. 4160-4164 (2002). [56] Y. He, Y. Li, J. Yu, and Y. Qian, "Chemical Control Synthesis of Nanocrystalline Sno2 by Hydrothermal Reaction", Materials Letters, Vol.40 (1), pp. 23-26 (1999). [57] L. Vayssieres and M. Graetzel, "Highly Ordered Sno2 Nanorod Arrays from Controlled Aqueous Growth", Angew Chem Int Ed Engl, Vol.43 (28), pp. 3666-3670 (2004). [58] D. F. Zhang, L. D. Sun, J. L. Yin, and C. H. Yan, "Low-Temperature Fabrication of Highly Crystalline Sno2 Nanorods", Advanced Materials, Vol.15 (12), pp. 1022-1025 (2003). [59] S. Supothina, R. Rattanakam, S. Vichaphund, and P. Thavorniti, "Effect of Synthesis Condition on Morphology and Yield of Hydrothermally Grown Sno2 Nanorod Clusters", Journal of the European Ceramic Society, Vol.31 (14), pp. 2453-2458 (2011). [60] N. Nang Dinh, M. C. Bernard, A. Hugot Le Goff, T. Stergiopoulos, and P. Falaras, "Photoelectrochemical Solar Cells Based on Sno2 Nanocrystalline Films", Comptes Rendus Chimie, Vol.9 (5–6), pp. 676-683 (2006). [61] S. Gubbala, V. Chakrapani, V. Kumar, and M. K. Sunkara, "Band-Edge Engineered Hybrid Structures for Dye-Sensitized Solar Cells Based on Sno2 Nanowires", Advanced Functional Materials, Vol.18 (16), pp. 2411-2418 (2008). [62] E. Ramasamy and J. Lee, "Ordered Mesoporous Sno2−Based Photoanodes for High-Performance Dye-Sensitized Solar Cells", The Journal of Physical Chemistry C, Vol.114 (50), pp. 22032-22037 (2010). [63] J. He, H. Lindstrom, A. Hagfeldt, and S. E. Lindquist, "Dye-Sensitized Nanostructured P-Type Nickel Oxide Film as a Photocathode for a Solar Cell", The Journal of Physical Chemistry B, Vol.103 (42), pp. 8940-8943 (1999). [64] H. L. Jianjun He, Anders Hagfeldt, and S. E. Lindquist, "Dye-Sensitized Nanostructured Tandem Cell-First Demonstrated Cell with a Dye-Sensitized Photocathode", Solar Energy Materials & Solar Cells, Vol.62, pp. 265-273 (2000). [65] F. Vera, R. Schrebler, E. Munoz, C. Suarez, P. Cury, H. Gomez, R. Cordova, R. E. Marotti, and E. A. Dalchiele, "Preparation and Characterization of Eosin B- and Erythrosin J-Sensitized Nanostructured Nio Thin Film Photocathodes", Thin Solid Films, Vol.490 (2), pp. 182-188 (2005). [66] J. H. Rhee, Y. H. Lee, P. Bera, and S. I. Seok, "Cu2s-Deposited Mesoporous Nio Photocathode for a Solar Cell", Chemical Physics Letters, Vol.477, pp. 345-348 (2009). [67] Y. M. Lee and C. H. Lai, "Preparation and Characterization of Solid N-Tio2/P-Nio Hetrojunction Electrodes for All-Solid-State Dye-Sensitized Solar Cells", Solid-State Electronics, Vol.53 (10), pp. 1116-1125 (2009). [68] C. S. Chou, Y. J. Lin, R. Y. Yang, and K. H. Liu, "Preparation of Tio2/Nio Composite Particles and Their Applications in Dye-Sensitized Solar Cells", Advanced Powder Technology, Vol.22 (1), pp. 31-42 (2011). [69] L. Li, R. Chen, G. Jing, G. Zhang, F. Wu, and S. Chen, "Improved Performance of Tio2 Electrodes Coated with Nio by Magnetron Sputtering for Dye-Sensitized Solar Cells", Applied Surface Science, Vol.256 (14), pp. 4533-4537 (2010). [70] J. Bandara, C. M. Divarathne, and S. D. Nanayakkara, "Fabrication of N–P Junction Electrodes Made of N-Type Sno2 and P-Type Nio for Control of Charge Recombination in Dye Sensitized Solar Cells", Solar Energy Materials and Solar Cells, Vol.81 (4), pp. 429-437 (2004). [71] J. Bandara and J. P. Yasomanee, "P-Type Oxide Semiconductors as Hole Collectors in Dye-Sensitized Solid-State Solar Cells", Semicond Sci Tech, Vol.22 (2), pp. 20-24 (2007). [72] J. Bandara, U. W. Pradeep, and R. G. S. J. Bandara, "The Role of N–P Junction Electrodes in Minimizing the Charge Recombination and Enhancement of Photocurrent and Photovoltage in Dye Sensitized Solar Cells", Journal of Photochemistry and Photobiology A: Chemistry, Vol.170 (3), pp. 273-278 (2005). [73] M. K. Nazeeruddin, R. Humphry Baker, P. Liska, and M. Gratzel, "Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline Tio2 Solar Cell", The Journal of Physical Chemistry B, Vol.107 (34), pp. 8981-8987 (2003). [74] 史继富, 徐刚, 苗蕾, and 徐雪青, "P-型和 Pn-型染料敏化太阳能电池", Acta Phys. -Chim. Sin., Vol.27 (6), pp. 1287-1299 (2011). [75] A. Morandeira, G. Boschloo, A. Hagfeldt, and L. Hammarstrom, "Coumarin 343−Nio Films as Nanostructured Photocathodes in Dye-Sensitized Solar Cells: Ultrafast Electron Transfer, Effect of the I3−/I− Redox Couple and Mechanism of Photocurrent Generation", The Journal of Physical Chemistry C, Vol.112 (25), pp. 9530-9537 (2008). [76] G. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, "A Channel Flow Cell System Specifically Designed to Test the Efficiency of Redox Shuttles in Dye Sensitized Solar Cells", Solar Energy Materials and Solar Cells, Vol.70 (1), pp. 85-101 (2001). [77] N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, "Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline Tio2 Solar Cells", J. Phys. Chem. B, Vol.107 (41), pp. 11307-11315 (2003). [78] D. B. Kuang, C. Klein, H. J. Snaith, J. E. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin, and M. Gratzel, "Ion Coordinating Sensitizer for High Efficiency Mesoscopic Dye-Sensitized Solar Cells: Influence of Lithium Ions on the Photovoltaic Performance of Liquid and Solid-State Cells", Nano Lett., Vol.6 (4), pp. 769-773 (2006). [79] P. Wang, S. M. Zakeeruddin, I. Exnar, and M. Gratzel, "High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte", Chemical Communications (24), pp. 2972-2973 (2002). [80] S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug, and J. R. Durrant, "Charge Separation Versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells: The Minimization of Kinetic Redundancy", Journal of the American Chemical Society, Vol.127 (10), pp. 3456-3462 (2005). [81] Y. L. Lee, C. L. Chen, L. W. Chong, C. H. Chen, Y. F. Liu, and C. F. Chi, "A Platinum Counter Electrode with High Electrochemical Activity and High Transparency for Dye-Sensitized Solar Cells", Electrochemistry Communications, Vol.12 (11), pp. 1662-1665 (2010). [82] L. Y. Lin, C. P. Lee, R.Vittal, and K. C. Ho, "Improving the Durability of Dye-Sensitized Solar Cells through Back Illumination", Journal of Power Sources, Vol.196 (3), pp. 1671-1676 (2011). [83] L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw, and I. Uhlendorf, "Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cells: Characterization by Intensity-Modulated Photocurrent Spectroscopy", The Journal of Physical Chemistry B, Vol.101 (49), pp. 10281-10289 (1997). [84] G. Schlichthorl, S. Y. Huang, J. Sprague, and A. J. Frank, "Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline Tio2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy", The Journal of Physical Chemistry B, Vol.101 (41), pp. 8141-8155 (1997). [85] J. van de Lagemaat, N. G. Park, and A. J. Frank, "Influence of Electrical Potential Distribution, Charge Transport, and Recombination on the Photopotential and Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline Tio2 Solar Cells:  A Study by Electrical Impedance and Optical Modulation Techniques", The Journal of Physical Chemistry B, Vol.104 (9), pp. 2044-2052 (2000). [86] A. Davis, T. Tran, and D. R. Young, "Solution Chemistry of Iodide Leaching of Gold", Hydrometallurgy, Vol.32 (2), pp. 143-159 (1993). [87] C. S. Chou, R. Y. Yang, C. K. Yeh, and Y. J. Lin, "Preparation of Tio2/Nano-Metal Composite Particles and Their Applications in Dye-Sensitized Solar Cells", Powder Technology, Vol.194 (1–2), pp. 95-105 (2009). [88] J. Chen, Y. Zou, Y. Li, X. Zhou, J. Zhang, X. Li, X. Xiao, and Y. Lin, "Improving the Photoelectrochemical Performance of Polythiophene Sensitized Tio2 Electrode by Modification with Gold Nanoparticles", Chemical Physics Letters, Vol.460 (1–3), pp. 168-172 (2008). [89] Y. Li, W. Z. Jia, Y. Y. Song, and X. H. Xia, "Superhydrophobicity of 3d Porous Copper Films Prepared Using the Hydrogen Bubble Dynamic Template", Chemistry of Materials, Vol.19 (23), pp. 5758-5764 (2007).
摘要: 本研究利用兩種軟性基材,分別為鎳金屬片及 Polyimide(PI)膜, 作為染料敏化太陽能電池(Dye-sensitized Solar Cell, DSSC)之光電極基材。配合電鍍金屬錫保護層的方式,將文獻所提具有氧化阻障層而無 法使用於 DSSCs 之鎳金屬片,得到再利用及不錯的電池效率表現,並 利用不同電流密度使得電鍍保護金屬錫層有不同的表面形態以及表面 粗糙度,可增加網印奈米 TiO2 顆粒與基材的接附。文獻中提及錫金屬 氧化物與 TiO2 顆粒間的能階關係,可使電子有效的進行傳輸。本研究 中也觀察到電鍍層厚度與電池效能表現之關係,隨著厚度的增加,不 僅會使電池整體暗電流發生機率增加,從電池效率(Efficiency)以及有 效填充因子(Fill Factor)的下降也可明顯觀察到。本研究也進一步由電 荷轉移阻抗(Charge Transfer Resistance, R1)值與電子壽命(Electron Lifetime, τn)探討電子傳輸特性。 此外,本研究將上述鎳金屬與錫金屬配合之系統,應用到目前塑 膠軟板當中相對熱裂解溫度較高之 PI 膜,利用表面置換金屬的方式, 於 PI 膜上置換一層金屬晶種層後還原,以提供後續無電電鍍鎳金屬之 使用,由此可將原本為絕緣體之塑膠基材轉換為導體,並利用此無電 電鍍鎳層,以電鍍方式再鍍上一層鎳金屬,增加基材機械強度,即可 得到一導電塑膠基材,並配合上述使用保護層金屬錫之使用,進行電 池效能表現之探討,塑膠基材的使用不僅可增加 DSSCs 之應用性,更 可有效降低材料使用成本。
Two flexible substrates, nickel foil and polyimide(PI) film, were utilized in this study as photoanode for dye sensitized solar cells(DSSCs). In previous studies, Ni foil was not available due to the oxide layer formed at surface, which the energy gap is too high to block the electrons transfer. We used electroplated tin as a protection layer to prevent Ni from oxidation and then the cells could perform efficiently. Different surface morphology and roughness substrates could be obtained through changing varied current density, that also improved the adherence between the nanoparticles TiO2 and substrate. Moreover, the relationship between cell performance and Sn thickness were observed via experiments. With increasing the thickness of metal Sn, the incidence of dark current was increased and more evidences were verified from decrease of cell efficiency and fill factor. Further explanations were discussed from charge transfer resistance and electron lifetime. In addition, the Ni/Sn bilayer structure mentioned above was applied to PI film substrate, which has higher thermal pyrolysis temperature. The PI film was underwent surface replacement and then deposited with Ni seed layer for the purpose of Ni electroless deposition. This could turn insulator into conductive substrate that has higher resistance. Combination with electroplating Ni and protection layer Sn allows DSSC performed efficiently. Not only the applications are broadened but also the cost could be lower favorably.
URI: http://hdl.handle.net/11455/3179
其他識別: U0005-0608201212265700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0608201212265700
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.