Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3180
標題: 以金微電極陣列製備凝血酵素核酸適合體感測器之研究
Electrochemical thrombin aptasensor based on gold disk microelectrode arrays
作者: 白蕙瑜
Bai, Huei-Yu
關鍵字: 金微電極陣列
Gold disk microelectrode arrays
凝血酵素
亞甲基藍
掃描式電化學顯微鏡
Thrombin
Methylene blue
Scanning electrochemical microscope
出版社: 化學工程學系所
引用: [1] A.D. Ellington, J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands, Nature, 346 (1990) 818-822. [2] C. Tuerk, L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, 249 (1990) 505-510. [3] D.S. Wilson, J.W. Szostak, In vitro selection of functional nucleic acids, Annu. Rev. Biochem, 68 (1999) 611-647. [4] M. Famulok, G. Mayer, M. Blind, Nucleic Acid AptamersFrom Selection in Vitro to Applications in Vivo, Acc. Chem. Res., 33 (2000) 591-599. [5] H.-A. Ho, M. Leclerc, Optical Sensors Based on Hybrid Aptamer/Conjugated Polymer Complexes, J. Am. Chem. Soc., 126 (2004) 1384-1387. [6] Y. Wang, Z. Li, H. Li, M. Vuki, D. Xu, H.-Y. Chen, A novel aptasensor based on silver nanoparticle enhanced fluorescence, Biosens. Bioelectron., 32 (2012) 76-81. [7] T. Hianik, V. Ostatna, M. Sonlajtnerova, I. Grman, Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin, Bioelectrochemistry, 70 (2007) 127-133. [8] X. Zhang, B. Qi, Y. Li, S. Zhang, Amplified electrochemical aptasensor for thrombin based on bio-barcode method, Biosens. Bioelectron., 25 (2009) 259-262. [9] Y. Yuan, R. Yuan, Y. Chai, Y. Zhuo, Z. Liu, L. Mao, S. Guan, X. Qian, A novel label-free electrochemical aptasensor for thrombin based on the {nano-Au/thionine}n multilayer films as redox probes, Anal. Chim. Acta, 668 (2010) 171-176. [10] F. Yan, F. Wang, Z. Chen, Aptamer-based electrochemical biosensor for label-free voltammetric detection of thrombin and adenosine, Sensors Actuators B: Chem., 160 (2011) 1380-1385. [11] W. Cheng, S. Ding, Q. Li, T. Yu, Y. Yin, H. Ju, G. Ren, A simple electrochemical aptasensor for ultrasensitive protein detection using cyclic target-induced primer extension, Biosens. Bioelectron., 36 (2012) 12-17. [12] C.A. K. Stulik, K. Holub, V. Mareck, W. Kutner, Microelectrodes. Definitions, characterization, and applications (Technical report), Pure Appl. Chem., 72 (2000). [13] E.D. Cera, Thrombin as procoagulant and anticoagulant, Journal of Thrombosis and Haemostasis, 5 (2007) 196-202. [14] J.M. Siller-Matula, G. Bayer, H. Bergmeister, P. Quehenberger, P. Petzelbauer, P. Friedl, I. Mesteri, B. Jilma, An experimental model to study isolated effects of thrombin in vivo, Thromb. Res., 126 (2010) 454-461. [15] W. Bode, Structure and interaction modes of thrombin, Blood Cells. Mol. Dis., 36 (2006) 122-130. [16] M.A. Shuman, S.P. Levine, Thrombin generation and secretion of platelet Factor 4 during blood clotting, The Journal of Clinical Investigation, 61 (1978) 1102-1106. [17] E. Baldrich, A. Restrepo, C.K. O''Sullivan, Aptasensor Development:  Elucidation of Critical Parameters for Optimal Aptamer Performance, Anal. Chem., 76 (2004) 7053-7063. [18] S.D. Gilman, Introduction to Bioanalytical Sensors (Cunningham, Alice J.), J. Chem. Educ., 77 (2000) 161. [19] B.R. Eggins, Chemical Sensors and Biosensors, John Wiley, Chichester, (2002). [20] G.S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements, Biosens. Bioelectron., 20 (2005) 2388-2403. [21] L. Su, W. Jia, C. Hou, Y. Lei, Microbial biosensors: A review, Biosens. Bioelectron., 26 (2011) 1788-1799. [22] W. Li, D.M. Sipe, X. Yong, L. Qiao, A MEMS Thermal Biosensor for Metabolic Monitoring Applications, Microelectromechanical Systems, Journal of, 17 (2008) 318-327. [23] D.Y. Wang, W. Yunmiao, H. Ming, G. Jianmin, W. Anbo, Fully Distributed Fiber-Optic Biological Sensing, Photonics Technology Letters, IEEE, 22 (2010) 1553-1555. [24] R.-Z. Hao, H.-B. Song, G.-M. Zuo, R.-F. Yang, H.-P. Wei, D.-B. Wang, Z.-Q. Cui, Z. Zhang, Z.-X. Cheng, X.-E. Zhang, DNA probe functionalized QCM biosensor based on gold nanoparticle amplification for Bacillus anthracis detection, Biosens. Bioelectron., 26 (2011) 3398-3404. [25] O.O. Soldatkin, I.S. Kucherenko, V.M. Pyeshkova, A.L. Kukla, N. Jaffrezic-Renault, A.V. El''skaya, S.V. Dzyadevych, A.P. Soldatkin, Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions, Bioelectrochemistry, 83 (2012) 25-30. [26] S.F. D''Souza, J. Kumar, S.K. Jha, B.S. Kubal, Immobilization of the urease on eggshell membrane and its application in biosensor, Materials Science and Engineering: C. [27] L.C. Clark, C. Lyons, ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY, Ann. N.Y. Acad. Sci., 102 (1962) 29-45. [28] J. Wang, Glucose Biosensors: 40 Years of Advances and Challenges, Electroanalysis, 13 (2001) 983-988. [29] K. Dehnicke, The Chemistry of Cyano Complexes of the Transition Metals. Organometallic Chemistry - A Series of Monographs. Von A. G. Sharpe. Academic Press, London-New York-San Francisco 1976. 1. Aufl., XI, 302 S., geb. £ 10.40, Angew. Chem., 88 (1976) 774-774. [30] W.-C. Wu, J.-L. Huang, Y.-C. Tsai, Direct electron transfer and biosensing of glucose oxidase immobilized at multiwalled carbon nanotube-alumina-coated silica modified electrode, Materials Science and Engineering: C, 32 (2012) 983-987. [31] C.-A. Lee, Y.-C. Tsai, Preparation of multiwalled carbon nanotube-chitosan-alcohol dehydrogenase nanobiocomposite for amperometric detection of ethanol, Sensors and Actuators B: Chemical, 138 (2009) 518-523. [32] Y.-C. Tsai, S.-Y. Chen, C.-A. Lee, Amperometric cholesterol biosensors based on carbon nanotube–chitosan–platinum–cholesterol oxidase nanobiocomposite, Sensors and Actuators B: Chemical, 135 (2008) 96-101. [33] A.N. Sekretaryova, D.V. Vokhmyanina, T.O. Chulanova, E.E. Karyakina, A.A. Karyakin, Reagentless Biosensor Based on Glucose Oxidase Wired by the Mediator Freely Diffusing in Enzyme Containing Membrane, Anal. Chem., 84 (2011) 1220-1223. [34] M. Giannetto, L. Elviri, M. Careri, A. Mangia, G. Mori, A voltammetric immunosensor based on nanobiocomposite materials for the determination of alpha-fetoprotein in serum, Biosens. Bioelectron., 26 (2011) 2232-2236. [35] C. Liu, C. Ma, D. Yu, J. Jia, L. Liu, B. Zhang, S. Dong, Immobilized multi-species based biosensor for rapid biochemical oxygen demand measurement, Biosens. Bioelectron., 26 (2011) 2074-2079. [36] J. Li, J. Lei, Q. Wang, P. Wang, H. Ju, Bionic catalysis of porphyrin for electrochemical detection of nucleic acids, Electrochim. Acta, 83 (2012) 73-77. [37] S. Song, L. Wang, J. Li, C. Fan, J. Zhao, Aptamer-based biosensors, TrAC, Trends Anal. Chem., 27 (2008) 108-117. [38] S.D. Jayasena, Aptamers: An Emerging Class of Molecules That Rival Antibodies in Diagnostics, Clin. Chem., 45 (1999) 1628-1650. [39] J.W.S. A.D. Ellington, Selection in vitro of single-stranded DNA molecules that fold into, Nature, 355 (1992) 850-852. [40] L. Yang, X. Zhang, M. Ye, J. Jiang, R. Yang, T. Fu, Y. Chen, K. Wang, C. Liu, W. Tan, Aptamer-conjugated nanomaterials and their applications, Adv. Drug Del. Rev., 63 (2011) 1361-1370. [41] N. de-los-Santos-Alvarez, M.a.J. Lobo-Castanon, A.J. Miranda-Ordieres, P. Tunon-Blanco, Aptamers as recognition elements for label-free analytical devices, TrAC, Trends Anal. Chem., 27 (2008) 437-446. [42] L.C. Bock, Griffin, Linda C., Latham, John A., Vermaas, Eric H., and Toole, John J., Selection of single-stranded DNA molecules that bind and inhibit human, Nature, 355 (1992) 564-566. [43] M. Tsiang, C.S. Gibbs, L.C. Griffin, K.E. Dunn, L.L.K. Leung, Selection of a Suppressor Mutation That Restores Affinity of an Oligonucleotide Inhibitor for Thrombin Using in Vitro Genetics, J. Biol. Chem., 270 (1995) 19370-19376. [44] D.M. Tasset, M.F. Kubik, W. Steiner, Oligonucleotide inhibitors of human thrombin that bind distinct epitopes, J. Mol. Biol., 272 (1997) 688-698. [45] R.A. Potyrailo, R.C. Conrad, A.D. Ellington, G.M. Hieftje, Adapting Selected Nucleic Acid Ligands (Aptamers) to Biosensors, Anal. Chem., 70 (1998) 3419-3425. [46] W. Wang, C. Chen, M.X. Qian, X.S. Zhao, Aptamer biosensor for protein detection based on guanine-quenching, Sensors Actuators B: Chem., 129 (2008) 211-217. [47] L. Kong, J. Xu, Y. Xu, Y. Xiang, R. Yuan, Y. Chai, A universal and label-free aptasensor for fluorescent detection of ATP and thrombin based on SYBR Green I dye, Biosens. Bioelectron., 42 (2013) 193-197. [48] C.-K. Chen, C.-C. Huang, H.-T. Chang, Label-free colorimetric detection of picomolar thrombin in blood plasma using a gold nanoparticle-based assay, Biosens. Bioelectron., 25 (2010) 1922-1927. [49] Y. Jalit, F.A. Gutierrez, G. Dubacheva, C. Goyer, L. Coche-Guerente, E. Defrancq, P. Labbe, G.A. Rivas, M.C. Rodriguez, Characterization of a modified gold platform for the development of a label-free anti-thrombin aptasensor, Biosens. Bioelectron., 41 (2013) 424-429. [50] J. Liu, Z. Cao, Y. Lu, Functional Nucleic Acid Sensors, Chem. Rev., 109 (2009) 1948-1998. [51] A. Numnuam, K.Y. Chumbimuni-Torres, Y. Xiang, R. Bash, P. Thavarungkul, P. Kanatharana, E. Pretsch, J. Wang, E. Bakker, Aptamer-Based Potentiometric Measurements of Proteins Using Ion-Selective Microelectrodes, Anal. Chem., 80 (2008) 707-712. [52] L.-D. Li, H.-T. Zhao, Z.-B. Chen, X.-J. Mu, L. Guo, Aptamer biosensor for label-free impedance spectroscopy detection of thrombin based on gold nanoparticles, Sensors Actuators B: Chem., 157 (2011) 189-194. [53] Y. Xiao, A.A. Lubin, A.J. Heeger, K.W. Plaxco, Label-Free Electronic Detection of Thrombin in Blood Serum by Using an Aptamer-Based Sensor, Angew. Chem. Int. Ed., 44 (2005) 5456-5459. [54] A. Erdem, M. Ozsoz, Electrochemical DNA Biosensors Based on DNA-Drug Interactions, Electroanalysis, 14 (2002) 965-974. [55] Y. Li, M. Han, H. Bai, Y. Wu, Z. Dai, J. Bao, A sensitive electrochemical aptasensor based on water soluble CdSe quantum dots (QDs) for thrombin determination, Electrochim. Acta, 56 (2011) 7058-7063. [56] L. Zhou, M.-H. Wang, J.-P. Wang, Z.-Z. Ye, Application of Biosensor Surface Immobilization Methods for Aptamer, Chin J Anal Chem, 39 (2011) 432-438. [57] E. Suprun, V. Shumyantseva, T. Bulko, S. Rachmetova, S. Rad’ko, N. Bodoev, A. Archakov, Au-nanoparticles as an electrochemical sensing platform for aptamer–thrombin interaction, Biosens. Bioelectron., 24 (2008) 825-830. [58] J. Chen, J. Zhang, J. Li, H.-H. Yang, F. Fu, G. Chen, An ultrasensitive signal-on electrochemical aptasensor via target-induced conjunction of split aptamer fragments, Biosens. Bioelectron., 25 (2010) 996-1000. [59] Y. Li, L. Liu, X. Fang, J. Bao, M. Han, Z. Dai, Electrochemiluminescence biosensor based on CdSe quantum dots for the detection of thrombin, Electrochim. Acta, 65 (2012) 1-6. [60] S. Szunerits, L. Thouin, 10 - Microelectrode Arrays, in: G.Z. Cynthia (Ed.) Handbook of Electrochemistry, Elsevier, Amsterdam, 2007, pp. 391-XI. [61] R. Feeney, S.P. Kounaves, Microfabricated Ultramicroelectrode Arrays: Developments, Advances, and Applications in Environmental Analysis, Electroanalysis, 12 (2000) 677-684. [62] T.J. Davies, S. Ward-Jones, C.E. Banks, J. del Campo, R. Mas, F.X. Munoz, R.G. Compton, The cyclic and linear sweep voltammetry of regular arrays of microdisc electrodes: Fitting of experimental data, J. Electroanal. Chem., 585 (2005) 51-62. [63] A.C. Barton, S.D. Collyer, F. Davis, D.D. Gornall, K.A. Law, E.C.D. Lawrence, D.W. Mills, S. Myler, J.A. Pritchard, M. Thompson, S.P.J. Higson, Sonochemically fabricated microelectrode arrays for biosensors offering widespread applicability: Part I, Biosens. Bioelectron., 20 (2004) 328-337. [64] C. Cugnet, O. Zaouak, A. Rene, C. Pecheyran, M. Potin-Gautier, L. Authier, A novel microelectrode array combining screen-printing and femtosecond laser ablation technologies: Development, characterization and application to cadmium detection, Sensors Actuators B: Chem., 143 (2009) 158-163. [65] S. Fletcher, M.D. Horne, Random assemblies of microelectrodes (RAM™ electrodes) for electrochemical studies, Electrochem. Commun., 1 (1999) 502-512. [66] S. Ward-Jones, A.O. Simm, C.E. Banks, R.G. Compton, Acoustically fabricated random microelectrode assemblies, Ultrason. Sonochem., 13 (2006) 261-270. [67] I.-H. Sung, D.-E. Kim, Nano-scale patterning by mechano-chemical scanning probe lithography, Appl. Surf. Sci., 239 (2005) 209-221. [68] Y.-C. Tsai, C.-L. Ho, S.-W. Liao, Nanobiosensors prepared by electrodeposition of glucose oxidase in PMMA nanochannels produced by atomic force microscopy nanolithography, Electrochem. Commun., 11 (2009) 1316-1319. [69] M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy, in: Electrochemical Impedance Spectroscopy, John Wiley & Sons, Inc., 2008. [70] L.R.F. Allen J. Bard, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, John Wiley & Sons, Inc., (2000). [71] P. Sun, F.O. Laforge, M.V. Mirkin, Scanning electrochemical microscopy in the 21st century, PCCP, 9 (2007) 802-823. [72] X. Lu, Q. Wang, X. Liu, Review: Recent applications of scanning electrochemical microscopy to the study of charge transfer kinetics, Anal. Chim. Acta, 601 (2007) 10-25. [73] C.G. Zoski, J.C. Aguilar, A.J. Bard, Scanning Electrochemical Microscopy. 46. Shielding Effects on Reversible and Quasireversible Reactions, Anal. Chem., 75 (2003) 2959-2966. [74] B. Liu, A.J. Bard, M.V. Mirkin, S.E. Creager, Electron Transfer at Self-Assembled Monolayers Measured by Scanning Electrochemical Microscopy, J. Am. Chem. Soc., 126 (2004) 1485-1492. [75] W.S. Roberts, D.J. Lonsdale, J. Griffiths, S.P.J. Higson, Advances in the application of scanning electrochemical microscopy to bioanalytical systems, Biosens. Bioelectron., 23 (2007) 301-318. [76] C. Zhao, G. Wittstock, Scanning electrochemical microscopy for detection of biosensor and biochip surfaces with immobilized pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase as enzyme label, Biosens. Bioelectron., 20 (2005) 1277-1284. [77] A.J. Bard, M.V. Mirkin, Scanning Electrochemical Microscopy, first ed., Marcel Dekker, New York, 2001. [78] F. Turcu, A. Schulte, G. Hartwich, W. Schuhmann, Imaging immobilised ssDNA and detecting DNA hybridisation by means of the repelling mode of scanning electrochemical microscopy (SECM), Biosens. Bioelectron., 20 (2004) 925-932. [79] X. Gan, R. Yuan, Y. Chai, Y. Yuan, L. Mao, Y. Cao, Y. Liao, 4-(Dimethylamino)butyric acid@PtNPs as enhancer for solid-state electrochemiluminescence aptasensor based on target-induced strand displacement, Biosens. Bioelectron., 34 (2012) 25-29. [80] F. Li, H. Cui, A label-free electrochemiluminescence aptasensor for thrombin based on novel assembly strategy of oligonucleotide and luminol functionalized gold nanoparticles, Biosens. Bioelectron., 39 (2013) 261-267. [81] L. Jiang, R. Yuan, Y. Chai, Y. Yuan, L. Bai, Y. Wang, Aptamer-based highly sensitive electrochemical detection of thrombin via the amplification of graphene, Analyst, 137 (2012) 2415-2420. [82] Y. Kang, K.-J. Feng, J.-W. Chen, J.-H. Jiang, G.-L. Shen, R.-Q. Yu, Electrochemical detection of thrombin by sandwich approach using antibody and aptamer, Bioelectrochemistry, 73 (2008) 76-81. [83] G.S. Bang, S. Cho, B.-G. Kim, A novel electrochemical detection method for aptamer biosensors, Biosens. Bioelectron., 21 (2005) 863-870. [84] J.-C. Vidal, E. Garcia, S. Mendez, P. Yarnoz, J.-R. Castillo, Three approaches to the development of selective bilayer amperometric biosensors for glucose by in situ electropolymerization, Analyst, 124 (1999) 319-324. [85] M. Mir, A.T.A. Jenkins, I. Katakis, Ultrasensitive detection based on an aptamer beacon electron transfer chain, Electrochem. Commun., 10 (2008) 1533-1536. [86] H. Yang, J. Ji, Y. Liu, J. Kong, B. Liu, An aptamer-based biosensor for sensitive thrombin detection, Electrochem. Commun., 11 (2009) 38-40. [87] H. Wang, Y. Liu, C. Liu, J. Huang, P. Yang, B. Liu, Microfluidic chip-based aptasensor for amplified electrochemical detection of human thrombin, Electrochem. Commun., 12 (2010) 258-261. [88] K. Guo, Y. Wang, H. Chen, J. Ji, S. Zhang, J. Kong, B. Liu, An aptamer–SWNT biosensor for sensitive detection of protein via mediated signal transduction, Electrochem. Commun., 13 (2011) 707-710. [89] S. Zhang, G. Zhou, X. Xu, L. Cao, G. Liang, H. Chen, B. Liu, J. Kong, Development of an electrochemical aptamer-based sensor with a sensitive Fe3O4 nanopaticle-redox tag for reagentless protein detection, Electrochem. Commun., 13 (2011) 928-931.
摘要: 基於微電極具有小體積及快速質傳速率等優點,本研究結合西班牙方所提供之金微電極陣列以自組裝方式建立一個不需標記之凝血酵素核酸適合體感測器,將抗凝血酵素核酸適合體固定於金微電極陣列表面,並利用硫基己烷覆蓋裸露之金屬表面獲得一排列整齊的抗凝血酵素核酸適合體單層膜。本實驗包括兩部分,第一部分利用亞甲基藍指示劑反應出抗凝血酵素核酸適合體與凝血酵素間的相互作用關係,並使用微分脈衝伏安法來監控,發現凝血酵素濃度與亞甲基藍訊號呈線性關係,其線性範圍為10-5~10-12 M,偵測極限為0.143 pM且具有良好選擇性。第二部分則是利用掃描式電化學顯微鏡來偵測凝血酵素,使用二茂鐵甲醇溶液當作電解液,並將抗凝血酵素核酸適合體與凝血酵素間的相互作用關係轉換成電流影像顯現出來,發現掃描式電化學顯微鏡探針所偵測電流與加入凝血酵素多寡呈線性關係,此方法所獲得之線性範圍為10-5~10-12 M,偵測極限為6.07 fM。
The construction of a sensitive electrochemical aptamer sensor (aptasensor) for thrombin detection is described. Among the advantages of using microelectrode-based devices are the possibility to work with small sample volumes and enjoying faster mass transport rates and lower interfacial capacitance than at macroelectrodes. Therefore, gold disk microelectrode arrays (GDMAs) are an attractive transducer option for aptasensors. The morphology of the GDMAs was inspected by scanning electron microscope. The study include two parts, the part I described that the interaction between a thrombin aptamer and thrombin on GDMAs was demonstrated by differential pulse voltammetry using methylene blue (MB) as an electrochemical indicator. This resulted in a decrease of MB peak current which correlated to the concentration of thrombin over a dynamic range spanning from 10-5 to 10-12 M. This method was able to linearly and selectively detect thrombin with a detection limit of 0.143 pM. The part II described a novel approach for the determination of thrombin on GDMAs using scanning electrochemical microscope (SECM). The interaction between thrombin aptamers and thrombin on GDMAs was imaged by SECM using ferrocenemethanol as an electrochemical mediator. The formation of thrombin/thrombin aptamer complex on GDMAs results in a decrease in the tip peak current on spatial SECM images. This method is able to linearly and selectively detect thrombin over a linear range from 10-12 to 10-5 M with a detection limit of 6.07 fM.
URI: http://hdl.handle.net/11455/3180
其他識別: U0005-2201201312181000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2201201312181000
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.