Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3190
標題: 利用具功能性高分子之微脂粒作為siRNA傳輸並結合光內化作用於癌症治療應用
Lipoplex Crosslinking with Multifunctional Polymer and Enhancing by Photochemical Internalization for siRNA Delivery
作者: 趙偉宇
Zhao, Wei-Yu
關鍵字: 微脂粒
siRNA
liposome
出版社: 化學工程學系所
引用: 六、參考文獻 1. D.B.Kittelson, Engines and nanoparticles: a review. Journal of Aerosol Science, 1998. 29: p. 575-588. 2. R.S.Fisher and J.Ho, Potential New Methods for Antiepileptic Drug Delivery. CNS Drugs, 2002. 16: p. 579-593. 3. R. Nahta, D. Yu, and M.C. Hung, Mechanisms of Disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nature Clinical Practice Oncology, 2006. 3: p. 269-280. 4. F. Danhiera and O. Feron, To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release, 2010. 148: p. 135-146. 5. Y. Malam and M. Loizidou, Liposomes and nanoparticles:nanosized vehicles for drug delivery in cancer. Trends in Pharmacological Sciences, 2009. 30: p. 592-599. 6. O. C. Farokhzad and R. Langer, Impact of Nanotechnology on Drug Delivery. ACSNANO, 2009. 3: p. 16-20. 7. H. Maedaa and J. Wu, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release, 2000. 65: p. 271-284. 8. S. Acharya and S.K. Sahoo, PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Advanced Drug Delivery Reviews, 2011. 63: p. 170-183. 9. G. E. Flaten and A.B. Dhanikul, Drug permeability across a phospholipid vesicle based barrier: A novel approach for studying passivediffusion European Journal of Pharmaceutical Sciences, 2006. 27: p. 80-90. 10. J.R.Casley‐Smith, Endocytosis: The different energy requirements for the uptake of particles by small and large vesicles into peritoneal macrophages. Journal of Microscopy, 1969. 90: p. 15-30. 11. K.A.Christensen and J.T.Myers, pH-dependent regulation of lysosomal calcium in macrophages. Journal of Cell Science, 2002. 115: p. 599-607. 12. A.Akinc and M.Thomas, Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. The Journal of Gene Medicine, 2005. 7: p. 657-663. 13. N.D.Sonawane, F.C.Szoka Jr, and A.S.Verkman, Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine–DNA polyplexes. The Journal of Biological Chemistry, 2003. 279: p. 44826-44831. 14. O.Boussif and F.Lezoualc, A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proceedings of the National Academy of Sciences, 1995. 92: p. 7297-7301. 15. D.Fischer, T.Bieber, and Y.Li, A Novel Non-Viral Vector for DNA Delivery Based on Low Molecular Weight, Branched Polyethylenimine: Effect of Molecular Weight on Transfection Efficiency and Cytotoxicity Pharmaceutical Research, 1999. 16: p. 1273-1279. 16. M.Anderson, J. and M.S.Shive, Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced Drug Delivery Reviews, 1997. 28: p. 5-24. 17. R.Shukla and V.Bansal, Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview. Langmuir, 2005. 21: p. 10644-10654. 18. E.Roux, C.Passirani, and S.Scheffold, Serum-stable and long-circulating, PEGylated, pH-sensitive liposomes. Journal of Controlled Release, 2004. 94: p. 447-451. 19. X.Lia and L.Ding, Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. International Journal of Pharmaceutics, 2009. 373: p. 116-123. 20. A.J.Bradley and D.V.Devine, Inhibition of Liposome-Induced Complement Activation by Incorporated Poly(Ethylene Glycol)-Lipids. Archives of Biochemistry and Biophysics, 1998. 357: p. 185-194. 21. Y.Iwasaki and K.Ishihara, Phosphorylcholine-containing polymers for biomedical applications. Analytical and Bioanalytical Chemistry 2005. 381: p. 534-546. 22. S.Fujisawa, T.Atsumi, and Y.Kadoma, Cytotoxicity and phospholipid-liposome phase-transition properties of 2-hydroxyethyl methacrylate (HEMA). Artificial Cells, Blood Substitutes and Biotechnology, 2001. 29: p. 245-261 23. E.S.Lee, et al., Poly(l-histidine)–PEG block copolymer micelles and pH-induced destabilization. Journal of Controlled Release, 2003. 90: p. 363-374. 24. J.M.Benns and J.S.Choi, pH-Sensitive Cationic Polymer Gene Delivery Vehicle : N-Ac-poly(l-histidine)-graft-poly(l-lysine) Comb Shaped Polymer. Bioconjugate Chemistry, 2000. 11: p. 637-645. 25. H.Yuan, et al., A Novel Poly(l-glutamic acid) Dendrimer Based Drug Delivery System with Both pH-Sensitive and Targeting Functions. Molecular Pharmaceutics, 2010. 7: p. 953-962. 26. E.S.Lee, et al., Tumor pH-responsive flower-like micelles of poly(l-lactic acid)-b-poly(ethylene glycol)-b-poly(l-histidine). Journal of Controlled Release, 2007. 123: p. 19-26. 27. T.R.Kyriakides, C.Y.Cheung, and N.Murthy, pH-Sensitive polymers that enhance intracellular drug delivery in vivo. Journal of Controlled Release, 2002. 78: p. 295-303. 28. D.Kietzmann, et al., pH-sensitive microparticles prepared by an oil/water emulsification method using n-butanol. International Journal of Pharmaceutics, 2009. 22: p. 61-66. 29. R.Pelton, Temperature-sensitive aqueous microgels. Advances in Colloid and Interface Science, 2000. 85: p. 1-33. 30. E.R.Gariépy and J.C.Leroux, In situ-forming hydrogels—review of temperature-sensitive systems. European Journal of Pharmaceutics and Biopharmaceutics, 2004. 58: p. 409-426. 31. J.C.Kim and J.D.Kim, Release property of temperature-sensitive liposome containing poly(N-isopropylacrylamide). Colloids and Surfaces B: Biointerfaces, 2002. 24: p. 45-52. 32. A.Harada and K.Kataoka, Chain Length Recognition: Core-Shell Supramolecular Assembly from Oppositely Charged Block Copolymers. Science, 1999. 283: p. 65-67. 33. Y.Lua and J.Li, In vitro and in vivo evaluation of mPEG-PLA modified liposomes loaded glycyrrhetinic acid International Journal of Pharmaceutics, 2008. 356: p. 274-281. 34. I.Henriksen, G.Smistad, and J.Karlsen, Interactions between liposomes and chitosan. International Journal of Pharmaceutics, 1994. 101: p. 227-236. 35. A.Fire, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. NATURE, 1998. 391: p. 806-811. 36. D.Bumcrot and M.Manoharan, RNAi therapeutics: a potential new class of pharmaceutical drugs. Nature Chemical Biology, 2006. 2: p. 711-719. 37. E.Fattala and A.Bochot, State of the art and perspectives for the delivery of antisense oligonucleotides and siRNA by polymeric nanocarriers. International Journal of Pharmaceutics, 2008. 364: p. 237-248. 38. S.M.Elbashir, et al., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001. 411: p. 494-498 39. D.Baulcombe, RNA silencing in plants. Nature, 2004. 431: p. 356-363 40. C.C.Mello, Return to the RNAi World : Rethinking Gene Epression and Evolution (Nobel Lecture). Cell Death and Differentiation, 2007. 14: p. 2013-2020. 41. A.Z.Fire, Gene Silencing by Double-Stranded RNA (Nobel Lecture). Angewandte Chemie International Edition, 2007. 46: p. 6966-6984. 42. M.Papetti and I.M.Herman, Mechanisms of normal and tumor-derived angiogenesis. American Journal of Physiology - Cell Physiology, 2002. 282: p. 947-970. 43. B.S.Croix, et al., Genes Expressed in Human Tumor Endothelium. Science, 2000. 289: p. 1197-1202. 44. E.Raskopf, A.Vogt, and T.Sauerbruch, siRNA targeting VEGF inhibits hepatocellular carcinoma growth and tumor angiogenesis in vivo. Journal of Hepatology, 2008. 49: p. 977-984. 45. S.H.Kim, J.H.Jeong, and S.H.Lee, PEG conjugated VEGF siRNA for anti-angiogenic gene therapy. Journal of Controlled Release, 2006. 116: p. 123-129. 46. J.Tao, et al., Inhibiting the growth of malignant melanoma by blocking the expression of vascular endothelial growth factor using an RNA interference approach. British Journal of Dermatology, 2005. 153: p. 715-724. 47. S.Y.Wonga, J.M.Peletb, and D.Putnam, Polymer systems for gene delivery—Past, present, and future. Progress in Polymer Science 2007. 32: p. 799–837. 48. T.M.Gallagher and M.J.Buchmeier, Coronavirus Spike Proteins in Viral Entry and Pathogenesis. Virology, 2001. 279: p. 371-374. 49. F.L.Graham and L.Prevec, Methods for Construction of Adenovirus Vectors. Molecular Biotechnology, 1995. 3: p. 207-220. 50. R.M.Kotin, Prospects for the Use of Adeno-Associated Virus as a Vector for Human Gene Therapy Human Gene Therapy, 1994. 5: p. 793-801. 51. M.A.Eglitis and W.F.Anderson, Retroviral vectors for introduction of genes into mammalian cells. Biotechniques, 1988. 6: p. 608-614. 52. Y.Yang and J.M.Wilson, Clearance of Adenovirus-Infected Hepatocytes by MHC Class I-Restricted CD4+ CTLs In Vivo. The Journal of Immunology, 1995. 155: p. 2564-2570. 53. P.D.Robbins and S.C.Ghivizzani, Viral Vectors for Gene Therapy. Pharmacology & Therapeutics, 1998. 80: p. 35-47. 54. M.B.Bally, P.Harvie, and F.M.P.Wong, Biological barriers to cellular delivery of lipid-based DNA carriers. Advanced Drug Delivery Reviews, 1999. 38: p. 291-315. 55. F.Liu and L.Huang, Development of non-viral vectors for systemic gene delivery. Journal of Controlled Release, 2002. 78: p. 259-266. 56. S.Beugin-Deroo and M.Ollivon, Bilayer Stability and Impermeability of Nonionic Surfactant Vesicles Sterically Stabilized by PEG–Cholesterol Conjugates. Journal of Colloid and Interface Science, 1998. 202: p. 324-333. 57. J.Soutschek, A.Akinc, and B.Bramlage, Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. NATURE, 2004. 432: p. 173-178. 58. N.C.Bellocq and S.H.Pun, Transferrin-Containing, Cyclodextrin Polymer-Based Particles for Tumor-Targeted Gene Delivery. Bioconjugate Chemistry, 2003. 14: p. 1122-1132. 59. R.J.Lee and L.Huang, Folate-targeted, Anionic Liposome-entrapped Polylysine-condensed DNA for Tumor Cell-specific Gene Transfer The Journal of Biological Chemistry, 1996. 271: p. 8481-8487. 60. D.Castanotto and J.J.Rossi, The promises and pitfalls of RNAinterference-based therapeutics. NATURE, 2009. 457: p. 426-433. 61. D.B.Rozema and D.L.Lewis, Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proceedings of the National Academy of Sciences, 2007. 104: p. 12982-12987. 62. E.Song and P.Zhu, Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nature Biotechnology, 2005. 23: p. 709-717. 63. C.Tuerk and L.Gold, Systematic Evolution of Ligands by Exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990. 249: p. 505-510. 64. J.Ruckman, L.S.Green, and J.Beeson, 2''-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). The Journal of Biological Chemistry, 1998. 273: p. 20556-20567. 65. S.D.Jayasena, Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clinical Chemistry, 1999. 45: p. 1628-1650. 66. A.P.Castano, P.Mroz, and M.R.Hamblin, Photodynamic therapy and anti-tumour immunity. Nature Reviews Cancer, 2006: p. 353-545. 67. A.E.Profio and D.R.Doiron, Dosimetry considerations in phototherapy. Medical Physics, 1981. 8: p. 190-196. 68. K.Berg, P.Selbo, and L.Prasmickaite, Photochemical Internalization: A Novel Technology for Delivery of Macromolecules into Cytosol. Cancer Research, 1999. 59: p. 1180-1183. 69. O.J.Norum and P.K.Selbo, Photochemical internalization (PCI) in cancer therapy: From bench towards bedside medicine. Journal of Photochemistry and Photobiology B: Biology, 2009. 96: p. 83-92. 70. A.Høgseta, L.Prasmickaiteb, and P.Selbo, Photochemical internalisation in drug and gene delivery. Advanced Drug Delivery Reviews, 2004. 56: p. 95-115. 71. K.Berga, A.Høgsetb, and L.Prasmickaite, Photochemical internalization (PCI): A novel technology for activation of endocytosed therapeutic agents. Medical Laser Application, 2006. 21: p. 239-250. 72. K.Berg and J.Moan, Lysosomes as photochemical targets. International Journal of Cancer, 1994. 59: p. 814-822. 73. J.Moan and K.Berg, The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochemistry and Photobiology, 1991. 53: p. 549-553. 74. S.Y.Lin, et al., Sterically Polymer-Based Liposomal Complexes with Dual-Shell Structure for Enhancing the siRNA Delivery. Biomacromolecules, 2012. 75. S.Y.Lin and W.H.Hsu, Hexagonal prism nanocarriers for mitigated phagocytosis. Journal of Controlled Release, 2011. 154: p. 84-92. 76. S.Dokka, D.Toledo, and X.Shi, Oxygen Radical-Mediated Pulmonary Toxicity Induced by Some Cationic Liposomes. Pharmaceutical Research, 2000. 17: p. 521-525. 77. A.Chonn, P.R.Cullis, and D.V.Devine, The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. The Journal of Immunology, 1991. 146: p. 4234-4241. 78. R.C.May and L.M.Machesky, Phagocytosis and the actin cytoskeleton. Journal of Cell Science, 2001. 114: p. 1061-1077. 79. E.Lai, Evidence of lipoplex dissociation in liquid formulations. Journal of Pharmaceutical Sciences, 2002. 91: p. 1225-1232. 80. R.Gala´ntai and I.Ba´rdos-Nagy, The interaction of human serum albumin and model membranes. International Journal of Pharmaceutics, 2000. 195: p. 207-218. 81. L.A.Carvalho and A.M.Carmona-Ribeiro, Interactions between Cationic Vesicles and Serum Proteins. Langmuir, 1998. 14: p. 6077-6081. 82. S.J.Eastman, et al., A concentrated and stable aerosol formulation of cationic lipid:DNA complexes giving high-level gene expression in mouse lung. Human Gene Therapy, 1997. 8: p. 765-773. 83. J.A.Khan and R.K.Kainthan, Water Soluble Nanoparticles from PEG-Based Cationic Hyperbranched Polymer and RNA That Protect RNA from Enzymatic Degradation. Biomacromolecules, 2006. 7: p. 1386-1388. 84. J.Gao and J.Sun, Lyophilized HER2-specific PEGylated immunoliposomes for active siRNA gene silencing. Biomaterials, 2010. 31: p. 2655-2664. 85. A.Noguchi, T.Furuno, and C.Kawaura, Membrane fusion plays an important role in gene transfection mediated by cationic liposomes. Federation of European Biochemical Societies, 1998. 433: p. 169-173. 86. R.A.Elbarbary, H.Takaku, and M.Tamura, Inhibition of vascular endothelial growth factor expression by TRUE gene silencing. Biochemical and Biophysical Research Communications, 2009. 379: p. 924-927.
摘要: 本研究是藉由團聯共聚物cholesterol-p (HEMA-co-lysine) ( PI )與磷脂質(DPPC)自我組裝成脂雙層結構,內外為親水性,夾層為疏水性的微脂粒複合體(SPLexes)。再與另一團聯共聚物 Foliate-PEG-P ( HEMA-co- histidine-MAAc ) ( PII )電性交聯至其表面 ,形成能夠包覆siRNA且具酸鹼應答、生物相容性的微脂粒複合體。外殼PII 之PEG鏈段可提供載體穩定循環之特性,且交聯層MAAc分子與histidine於酸性環境下,質子化呈正電排斥離開載體表面,提供酸鹼應答而釋放siRNA。 本實驗使用不同重量比之二團聯共聚物(PI 及PII)與磷脂質(DPPC)對於微脂粒複合體粒徑與界面電位之影響。實驗結果顯示能製備出粒徑70~80 nm且粒徑均一、表面電中性之微脂粒複合體。利用上述最佳條件包覆siRNA-VEGF轉染至癌細胞中,材料毒性分析結果顯示,此微脂粒複合體為低毒性,在達到基因抑制的條件下,為有效及安全的siRNA傳輸載體。而經由胞外藥物釋放模擬實驗證實,微脂粒複合體於中性環境(pH=7.4)下,可以穩定包覆siRNA;而於酸性環境下,MAAc分子被質子化而不帶電,使PII高分子脫離微脂粒複合體表面後,微脂粒複合體因含有胺基且帶正電,與溶酶體融合而釋放內核之siRNA。轉染至HeLa細胞48 hr結果顯示,可有效抑制74.5 ± 4.5 %的VEGF蛋白表達,同時能夠誘導細胞凋亡。 此外,光動力治療是使用光敏劑結合特定波長光激發後而達到治療目的,可以重覆使用並能夠選擇性地使腫瘤細胞壞死,而不傷害周圍正常組織。而光化學內化是藥物控制釋放的技術,藉光敏劑的光化學作用,使細胞內的胞器膜破裂而釋放溶酶體內物質進入細胞質。本研究以光敏劑20FTPP的光內化作用,結合上述微脂粒複合體的基因治療來增加siRNA傳輸與基因抑制效果。結果顯示20FTPP-micelle的光內化作用具有低細胞毒性,並觀察細胞質內酸化現象。共軛交顯微鏡影像中,觀察到自由基的產生且含有20FTPP經光內化作用而造成膜破裂會的溶酶體與含有siRNA的溶酶體溶合,釋放siRNA進入細胞質。利用此光內化作用機制,微脂粒複合體轉染至HeLa細胞48 hr結果顯示,可抑制90% VEGF蛋白表現。
英文摘要 In this research, the block copolymer cholerterol-p(HEMA-co-lysine) and phospholipid (DPPC) were synthesized and self-assembled into the liposome-like structure , and formed the SPLexes ( Small Particular Lipoplexs ). The block copolymer , foliate-PEG-P(HEMA-co-histidine -MMAc) , crosslink to the surface of the lipoplex by electric interaction. The PEG segments exist in the outer shell of lipoplex and provide the characterstic that could be stable in blood stream . MAAc and hisdidine moiety are responded and protonated by acidified environment and trigger the siRNA release. The particle sizes and polydispersity were discussed to evaluate the affection of the weight ratio of block copolymers PI, PII and DPPC. From the result , the uniform and optimal particle size of lipoplex was around 70~80 nm . Based the optimal conditions , siRNA-VEGF was encapsulated with SPLexes efficiently and could be the potential candidate for siRNA delivery. For the result of MTS analysis , SPLexes showed a low cytotoxicity. For siRNA release, siRNA/SPLexes was stabilized at pH=7.4 and siRNA released under acidic condition . Due to MMAc molecules of PII protonated to become neutral , they caused the PII disassociated from the SPLexes surface. For anticancer activity , siRNA/SPLexes inhibited the VEGF protein expression to 74.5 ± 4.5 % and induced the apoptosis efficiently. Photochemical internalization ( PCI ) is a technology based on photochemical reactions inducing rupture of endocytic vesicles and releasing siRNA into the cytoplasm.The main point of this research is contributed to the effort to develop lipoplexes based siRNA delivery systems via photochemical reactions . The results show that the 20FTPP-micelles bear were low photocytotoxicity . The observation indicates the production of reactive oxygen species in cytoplasm. The results of CLSM images show that endocytic vesicles ( containing 20FTPP -micelles and siRNA/SPLexes respectively) are fused, and siRNA are released from endo/lysosome. Finally , through the mechanism , the siRNA/SPLexes inhibited the VEGF protein expression to 90%.
URI: http://hdl.handle.net/11455/3190
其他識別: U0005-0108201213241700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0108201213241700
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.