Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31902
標題: Bacillus mycoides對西瓜蔓割病菌的影響
Effects of Bacillus mycoides on the fungus of watermelon Fusarium wilt
作者: 詹佩璇
Chan, Pei-Hsuan
關鍵字: Bacillus mycoides
Bacillus mycoides
Fusarium oxysporum f. sp. niveum
二甲基二硫化物
有機揮發性物質
Fusarium oxysporum f. sp. niveum
dimethyl disulfide
volatile organic compound
出版社: 植物病理學系所
引用: 謝紅薇,顏冬冬,毛連綱,吳篆芳,郭美霞,王秋霞,李園,曹坳程。2012。燻蒸劑對土傳病原菌的防效和對土壤微生物群落的影響。中國農學通報。28 (12) :223-229。 Arrebola, E., Sivakumar, D., and Korsten, L. 2010. Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biological Control 53(1):122-128. Auger, J., and Thibout, E. 2002. Substances soufrées des Allium et des Crucifères et leurs potentialités phytosanitaires. In: Bio-pesticides d’origine végétale, T.DOC, Paris. p.77-95. Bargabus, R., Zidack, N., Sherwood, J., and Jacobsen, B. 2002. Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiological and Molecular Plant Pathology 61 (5):289-298. Beckman, C. H., and Roberts, E. 1995. On the nature and genetic basis for resistance and tolerance to fungal wilt diseases of plants. Advances in Botanical Research 21:35-77. Benhamou, N., Kloepper, J. W., Quadt-Hallman, A., and Tuzun, S. 1996. Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiology 112 (3):919-929. Benhamou, N., Kloepper, J. W., and Tuzun, S. 1998. Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204 (2):153-168. Bruce, A., Austin, W., and King, B. 1984. Control of growth of Lentinus lepideus by volatiles from Trichoderma. Transactions of the British Mycological Society 82 (3):423-428. COA. 2010. Ann. Rep. Agric. Statistic. Council of Agriculture, Executive Yuan. Taipei, Taiwan. Cheetham, P.J.S. 1997. Combining the technical push and business pull for natural flavours. Advances in Biochemical Engineering/ Biotechnology 55: 1–49. Chen, K.S., Liou, T.D., Chang, P. F. L., and Huang, J.W. 2003. Selection for resistance of watermelon varieties (lines) to Fusarium wilt and their genetic analysis of inheritance. Plant Pathology Bulletin 12(3):173-180. Choudhary, D. K., and Johri, B. N. 2009. Interactions of Bacillus spp. and plants--with special reference to induced systemic resistance (ISR) . Microbiological Research 164(5):493-513. Czaban, J., Ksiezniak, A., and Perzynski, A. 2004. An attempt to protect winter wheat against Fusarium culmorum by the use of rhizobacteria Pseudomonas fluorescens and Bacillus mycoides. Polish Journal of Microbiology 53(3):175-182. Dahlberg, K.R., 1982. Physiology and biochemistry of fungal sporulation. Annual Review of Phytopathology 20: 281–301. Di Franco, C., Beccari, E., Santini, T., Pisaneschi, G., and Tecce, G. 2002. Colony shape as a genetic trait in the pattern-forming Bacillus mycoides. BMC Microbiology 2(1):33. Emmert, E. A. B., and Handelsman, J. 1999. Biocontrol of plant disease: a (Gram‐) positive perspective. FEMS Microbiology Letters 171(1):1-9. Ezra, D., Hess, W., and Strobel, G. A. 2004. New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. Microbiology 150 (12):4023-4031. FAO. 2011 FAO yearbook (production) (Food and Agriculture Organization of the United Nations: Rome). Fiddaman, P., and Rossall, S. 1993. The production of antifungal volatiles by Bacillus subtilis. Journal of Applied Microbiology 74(2):119-126. Fritsch, J. 2004. Dimethyl disulfide as a new chemical potential alternative to methyl bromide in soil disinfestation in France. Acta Horticulturae 698: 71-76. Gilreath, J. P., Motis, T. N., Santos, B. M., Mirusso, J. M., Gilreath, P. R., Noling, J. W., Jones, J. P. 2005. Influence of supplementary in-bed chloropicrin application on soilborne pest control in tomato (Lycopersicon esculentum). Crop Protection, 25(24):779-784. Herbert, B. E., and McNeal, K. S. 2009. Volatile organic metabolites as indicators of soil microbial activity and community composition shifts. Soil Science Society of America Journal 73(2):579-588. Huang, C. J., Tsay, J. F., Chang, S. Y., Yang, H. P., Wu, W. S., and Chen, C. Y. 2012. Dimethyl disulfide is an induced systemic resistance‐elicitor produced by Bacillus cereus C1L. Pest Management Science. 68(9):1306-1310 Huang, R., Li, G.Q., Zhang, J., Yang, L., Che, H.J., Jiang, D.H., and Huang, H.C. 2011. Control of postharvest botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology 101(7):859-869. Insam, H., and Seewald, M. S. A. 2010. Volatile organic compounds (VOCs) in soils. Biology and Fertility of Soils 46(3):199-213. Landaud, S., Helinck, S., and Bonnarme, P. 2008. Formation of volatile sulfur compounds and metabolism of methionine and other sulfur compounds in fermented food. Applied Microbiology and Biotechnology 77(6):1191-1205. Linton, C., and Wright, S. 1993. Volatile organic compounds: microbiological aspects and some technological implications. Journal of Applied Microbiology 75(1):1-12. Liu, W. W., Mu, W., Zhu, B. Y., Du, Y. C., and Liu, F. 2008. Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agricultural Sciences in China 7(9):1104-1114. López-Bucio, J., Campos-Cuevas, J. C., Hernández-Calderón, E., Velásquez-Becerra, C., Farías-Rodríguez, R., Macías-Rodríguez, L. I., and Valencia-Cantero, E. 2007. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin-and ethylene-independent signaling mechanism in Arabidopsis thaliana. Molecular Plant-Microbe Interactions 20(2):207-217. Mao, L. G., Wang, Q. X., Yan, D. D., Xie, H. W., Li, Y., Guo, M. X., and Cao, A. C. 2012. Evaluation of the combination of 1, 3‐dichloropropene and dazomet as an efficient alternative to methyl bromide for cucumber production in China. Pest Management Science 6(4): 602–609 Minerdi, D., Bossi, S., Maffei, M. E., Gullino, M. L., and Garibaldi, A. 2011. Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiology Ecology 76(2):342-351. Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., and Setlow, P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews 64 (3):548-572. Ruzo, L. O. 2006. Physical, chemical and environmental properties of selected chemical alternatives for the pre‐plant use of methyl bromide as soil fumigant. Pest Management Science 62(2):99-113. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., and Paré, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology 134 (3):1017-1026. Smith S. N. 2007. An overview of ecological and habitat aspects in the genus Fusarium with special emphasis on the soil-borne pathogenic forms. Plant Pathology Bulletin 16:97-120. Stotzky, G., Schenck, S., and Papavizas, G. C. 1976. Volatile organic compounds and microorganisms. Critical Reviews in Microbiology 4 (4):333-382. Strobel, G. A., Dirkse, E., Sears, J., and Markworth, C. 2001. Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147 (11):2943. Wang, D., Rosen, C., Kinkel, L., Cao, A., Tharayil, N., and Gerik, J. 2009. Production of methyl sulfide and dimethyl disulfide from soil-incorporated plant materials and implications for controlling soilborne pathogens. Plant and Soil 324 (1):185-197. Wheatley, R., Hackett, C., Bruce, A., and Kundzewicz, A. 1997. Effect of substrate composition on production of volatile organic compounds from Trichoderma spp. inhibitory to wood decay fungi. International Biodeterioration and Biodegradation 39 (2):199-205. Wheatley, R., Millar, S., and Griffiths, D. 1996. The production of volatile organic compounds during nitrogen transformations in soils. Plant and Soil 181(1):163-167. Zhang, H., Kim, M. S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M. A., Ryu, C. M., Allen, R., and Melo, I. S. 2007. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226(4):839-851.
摘要: 西瓜為全球最重要的蔬菜作物之ㄧ,其栽培面積佔全球蔬菜作物的第二位。在感染西瓜之真菌性病害中,由Fusarium oxysporum f. sp. niveum(Fon)所引起之西瓜蔓割病Fusarium wilt是限制西瓜生長的重要因子之一。此病害會纏據於維管束中而使水分運送困難,造成植株萎凋。目前較有效之防治策略為抗病育種但較耗時。本實驗利用分離自田土的Bacillus mycoides CHT2401與CHT2402菌株,分別培養於TSA(tryptic soy agar)、NA(nutrient agar)和KB(King’s B medium)三種培養基中,並以密封培養皿的方法觀察微生物產氣對西瓜蔓割病菌的抑制效果。菌絲生長及孢子發芽方面以B. mycoides培養於TSA培養基上之抑制效果最顯著。分生孢子產量測試則是以B. mycoides CHT2402培養於NA與KB培養基所產生之氣體處理西瓜蔓割病菌菌絲在第七天時分生孢子的產量有顯著差異。但若利用產氣處理過之病原菌菌絲活力測試與產氣處理過之病原菌之孢子懸浮液接種西瓜幼苗則與對照組無明顯差異,顯示B. mycoides所產生之氣體只會延遲西瓜蔓割病菌之生長並不會對菌絲造成無法復原之傷害。進一步利用氣相層析質譜儀(gas chromatography-mass spectrometry)分析B. mycoides 所產生氣體,發現CHT2401與CHT2402菌株培養於TSA與NA培養基中都會產生二甲基二硫化物(dimethyl disulfide, DMDS),進一步利用此氣體標準品測試,得知於5.15 μg DMDS處理時菌絲抑制率與B. mycoides 培養於TSA培養基上相近,而培養於NA與KB培養基所產生氣體之菌絲抑制率則低於5.15 μg DMDS處理;在發芽後生長與發芽率方面,培養於NA與KB培養基所產生氣體之菌絲抑制率對應DMDS處理之值則較菌絲抑制對應之值大,推測原因為孢子懸浮液之DMDS含量較孢子生長所使用的培養基來的小,因此孢子懸浮液中的DMDS濃度也較高。於光學顯微鏡觀察可知於5.15 μg DMDS處理時孢子有腫大與提前分支現象,但在B. mycoides產氣處理之孢子卻無此現象,顯示B. mycoides 培養於三種培養基中時所產生DMDS的量較5.15 μg來的少。利用DMDS處理西瓜蔓割病菌病土並測量厚膜孢子存活率,得知以206 μg DMDS處理13天與以515 μg DMDS 處理3天時,厚膜孢子之存活率皆可下降到53%,而以772.5 μg DMDS處理15天時,存活率則下降到20%。由以上實驗結果發現B. mycoides產生之氣體可以降低病土中厚膜孢子的數量。於電子顯微鏡下也觀察到經B. mycoides產氣處理與DMDS處理之西瓜蔓割病菌菌絲均有皺縮之現象,而以B. mycoides培養在TSA培養基上產氣處理與DMDS處理的菌絲更可見有針刺狀構造,推測此構造可能為過量之DMDS所致。
Watermelon is one of the important fruits consumed in the world. In fact, the cultivation area for watermelon is the second largest vegetable worldwide. Among the fungal diseases, Fusarium wilt, caused by Fusarium oxysporum f. sp. niveum (Fon), limits watermelon production. This pathogen colonizes in vascular bundle which causes the difficulty of water transport and leads to wilting of plants. Currently, one of the most effective ways to control this disease is the resistant line breeding. However, this method is time consuming. In this experiment, Bacillus mycoides CHT2401 and CHT2402, isolated from land field, were cultured respectively on TSA (tryptic soy agar), NA (nutrient agar), and KB (King’s B medium) media, to evaluated the inhibition of mycelia growth and spore germination of Fon by the volatile compounds released by these bacteria. The volatile compounds released by B. mycoides cultured on TSA medium had better inhibition on mycelial growth and spore germination of Fon. Results of spore production of Fon in the presence of volatile compounds released by B. mycoides CHT2402 cultured on NA and KB media for 7 days showed significant difference compared to the control. But there was no difference in mycelial growth and spore germination of Fon between the control and the treatments with B. mycoides volatile compounds. The volatile compounds released by B. mycoides did not cause irretrievable damage to mycelia. Gas chromatography-mass spectrometry analysis showed that the major volatile compound was dimethyl disulfide (DMDS) released by CHT2401 and CHT2402 cultured on both TSA and NA media. The results of mycelial inhibition were similar among treatments of 5.15 μg DMDS and the volatile compounds produced by the treated B. mycoides isolates cultured on TSA medium. Nevertheless, the mycelial inhibition by the volatile compounds produced by B. mycoides in both NA and KB media was lower than that by the 5.15 μg DMDS treatment. For spore germination and the mycelial growth after spore germination, the corresponding DMDS amounts for inhibition were larger than that for mycelial growth. The possible reason for the higher concentrations of DMDS in spore suspension is that the volume of spore suspension is smaller than that of the medium. The Fon spores treated with 5.15 μg DMDS swelled and branched earlier comparing to the spores treated with bacterial volatile compounds. This indicates that the concentration of DMDS in B. mycoides volatile compounds used in our experiments was less than 5.15 μg. In survival test of chlamydospore treated with DMDS, treating infested soil with 206 μg DMDS for 13 days and treating infested soil with 515 μg DMDS for 3 days both decreased the survival rate of chlamydospore to 53%; whereas treating infested soil with 772.5 μg DMDS for 15 days decreased the survival rate of chlamydospore to 20%. According to our results, DMDS in the volatile compounds released by B. mycoides could reduce the number of chlamydospores in infested soil. SEM observation revealed that the Fon mycelia treated with B. mycoides volatile compounds and DMDS showed surface shrinkage. Furthermore, needle structures were observed on the Fon mycelia treated with volatile compounds released by B. mycoides cultured on TSA medium and DMDS. This structure could be caused by excess DMDS.
URI: http://hdl.handle.net/11455/31902
其他識別: U0005-2008201214255700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008201214255700
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.