Please use this identifier to cite or link to this item:
標題: 台灣Xylella fastidiosa梨樹與葡萄菌株之病原性與營養需求測試
Pathogenicity and Nutritional Requirement Tests of Xylella fastidiosa Pear and Grape Strains Isolated in Taiwan
作者: 徐筱筑
Hsu, Shiao-Chu
關鍵字: Xylella fastidiosa
Xylella fastidiosa
Color changing units
Pear leaf scorch
Nutritional requirement test
Color changing units
出版社: 植物病理學系所
引用: Almeida, R. P. and Purcell, A. H. 2006. Patterns of Xylella fastidiosa colonization on the precibarium of leafhopper vector relative to transmission to plants. Ann. Entomol. Soc. Am. 99:884-890. Alves, E., Kitajima, E. W., and Leite, B. 2003. Interaction of Xylella fastidiosa with different cultivars of Nicotiana tabacum: a comparison of colonization patterns. J. Phytopathol. 151: 500-506. Alves, E., Leite, B., Marucci, R. C., Pascholati, S. F., Lopes, J. R., and Anderson, P. C. 2008. Retention sites for Xylella fastidiosa in four sharpshooter vectors (Hemiptera: Cicadellidae) analyzed by scanning electron microscopy. Curr. Microbiol. 56:531-538. Berisha, B., Chen, Y. D., Zhang, G. Y., Xu, B. Y., and Chen, T. A. 1998. Isolation of Pierce’s disease bacteria from grapevines in Europe. Eur. J. Plant Pathol. 104:427-33. Blua, M. J., Philips, P. A., and Redak, R. A. 1999. A new sharpshooter threatens both crops and ornamentals. Calif. Agric. 53:22-25. Chatelet, D. S., Matthews, M. A., and Rost, T. L. 2006. Xylem structure and connectivity in Grapevine (Vitis vinifera) shoots provides a passive mechanism for the spread of bacteria in grape plants. Ann Bot. 98: 483-494. Chatelet, D. S., Wistrom, C. M., Purcell, A. H., Rost, T. L., and Matthews, M. A. 2011. Xylem structure of four grape varieties and 12 alternative hosts to the xylem-limited bacterium Xylella fastidiosa. Ann. Bot. 108: 73-85. Chang, C.J., Garnier, M., Zreik, L., Rosseti, V. and Bove, J.M. 1993. Culture and serological detection of the xylem-limited bacterium causing citrus variegated chlorosis and its identification as a strain of X. fastidiosa. Curr. Microbiol. 27:137-142. Chang, C. J., and Walker, J. T. 1988. Bacterial leaf scorch of northern red oak: isolation, cultivation, and pathogenicity of a xylem-limited bacterium. Plant Dis. 72:730-733. Chang, C. J., and Donaldson, R. C. 1993. Xylella fastidiosa: cultivation in chemically defined medium. Phytopathology 83:192-194. Chang, C. J. and Donaldson, R. C. 2000. Nutritional requirements of Xylella fastidiosa, which causes Pierce’s disease in grapes. Can. J. Microbiol. 46: 291-293. Chen, J.,Hartung, J. S., Chang, C. J., and Vidavar, A. K. 2002. An evolutionary perspective of Pierce’s disease of grapevine, citrus variegated chlorosis, and mulberry leaf scorch diseases. Curr. Microbiol. 45:423-428. Damsteegt,V. D., Brlansky, R. H., Phillips, P. A., and Roy A. 2006. Transmission of Xylella fastidiosa, causal agent of citrus variegated chlorosis, by the glassy-winged sharpshooter Homalodisca coagulate. Plant Dis. 90:567-570. Davis, M.J., Purcell, A.H. 1978. Pierce’s disease of grapevines: isolation of the causal bacterium. Science 199:75-77. Davis, M. J., Purcell, A. H. and Thomson, S.V. 1980. Isolation medium for the Pierce’s disease bacterium. Phytopathology 70:425-429. de Lima, J. E. O., Miranda, V. S., Hartung, J. S., Brlansky, R. H., Coutinho, A., Roberto, S. R.,and Carlos, E. F. 1998. Coffee leaf scorch bacterium: Axenic culture, pathogenicity, and comparison with Xylella fastidiosa of citrus. Plant Dis. 82:94-97. Francis, M., Civerolo, E., and Bruening, G. 2008. Inproved bioassay of Xylella fastidiosa strains using Nicotiana tabacum cultivar SR1. Plant Dis.92:14-20. Goheen, A. C., Nyland, G., Lowe, S. K. 1973. Association of a Rickettsia-like organism with Pierce''s disease of grapevines and alfalfa dwarf and heat therapy of the disease in grapevines. Phytopathology 63:341-345. Hernandez-Martinez, R., K. de la Cerda, H. S. Costa, D. A. Cooksey, and F. P. Wong. 2007. Phylogenetic relationships of Xylella fastidiosa strains isolated from landscape ornamentals in southern California. Phytopathology. 97:857-864. Herwitt, W.B., Houston, B.R., Frazier, N.W. and Freitag, J.H. 1946. Leafhopper transmission of the virus causing Pierce’s disease of grapevine and dwarf of alfalfa. Phytopathology 36:117-128. Herwitt, W.B. 1939. A transmissible disease of grapevines. (Abstr.), Phytopathology 29:10. Hopkins, D.L. and Mollenhaure, J.A. 1971. Suppression of Pierce’s disease symptoms by tetracycline antibiotics, Plant Dis. Rep.55:610-612. Hopkins, D.L. and Mollenhaure, H.H. 1973. Ricketssia-like bacterium associated with Pierce’s disease of grapes. Science 179:298-300. Hopkins, D. L. 1989. Xylella fastidiosa - xylem-limited bacterial pathogen of plants. Annu. Rev. Phytopathol. 27: 271-290. Houston, B. R., Hewitt, W. E., Esau, K. 1947. The mode of vector feeding and the tissue involved in the transmission of Pierce’s disease virus in grape and alfafa. Phytopathology 37: 247-253. Kitajima, E.W., Bakarcic, M. and Rernandez-Valiela, M.V. 1975. Association of rickettsialike bacteria with plum leaf scald disease. Phytopathology 65:476-479. Leu, H. H., Leu, L. S., and Lin, C. P. 1998. Development and application of monoclonal antibodies against the causal bacterium of pear leaf scorch, Xylella fastidiosa. J. Phytopathol. 146:31-37. Leu, L. S. and Su, C. C. 1993. Isolation, cultivation, and pathogenicity of Xylella fastidiosa, the causal bacterium of pear leaf scorch disease. Plant Dis. 77:642-646. Lopes, S.A., Ribeiro, D.M., Roberto, P.G., França, S.C., and Santos, J.M. 2000. Nicotiana tabacum as an experimental host for the study of plant-Xylella fastidiosa interactions. Plant Dis. 84:827-830. Meng, Y., Li, Y., Galvani, C. D., Hao, G., Turner, J. N., Burr, T. J., and Hoch, H. C. 2005. Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J. Bacteriol. 187:5560-5567. Monteiro, P. B., Renaudin, J., Jagoueix-Eveillard, S., Ayres, A. J.; Garnier, M., and Bove, J. M. 2001. Catharanthus roseus, an Experimental Host Plant for the Citrus Strain of Xylella fastidiosa. Plant Dis. 85:246-251. Purcell, A. H., and Hopkins, D. L. 1996. Fastidious xylem-limited bacterial plant pathogens. Annu. Rev. Phytopathol. 34:131-151. Purcell, R. H., Taylor-Robinson, D., Wong, D. and Chanock, R. M. 1966. Color test for the measurement of antibody to T-strain mycoplasmas. J. Bacteriol. 92:6-12. Randall, J. J., Goldberg, N. P., Kemp, J. D., Radionenko, M., French, J. M., Olsen, M. W., and Hanson, S. F. 2009. Genetic Analysis of a Novel Xylella fastidiosa Subspecies Found in the Southwestern United States. Appl. Environ. Microbiol. 75:5631-5638. Redak, R. K., Purcell, A. H., Lopes, J. R. S., Blua, M. J., Mizell, R. F. III., Anderson, P. C. 2004. The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annu. Rev. of Entomol. 49: 243-270. Raju, B.C., Goheen, A.C., and Frazier, N.W. 1983. Occurrence of Pierce''s disease bacteria in plants and vectors in California. Phytopathology 73:1309-1313. Su, C. C., Yang, W.J., Feng, C. Y., Hsu, S. T., and Tzeng, K. C. 2008. The application of DNA fingerprinting amplified by arbitrary primers in differentiating pear leaf scorch bacterium from other Xylella fastidiosa strains. Plant Pathol. Bull. 17:261-269. Su, C. C., Shih, H. T., Lin, Y. S. Su, W. Y. and Kao, C. W. 2011. Current status of Pierce’s disease of grape and its vector in Taiwan. Proceedings of the Symptom on Integrated Management Technology of Insect and Insect-Borne Diseases, Special Publication of TARI No.152, p25-50. Su, C. C., and Leu, L. S. 1995. Distribution of pear leaf scorch and monthly isolation of its causal organism, Xylella fastidiosa from infected trees. Plant Pathol. Bull. 4:30-33. Su. C. C., Chang, C. J., Yang, W. J., Hsu, S. T., Tzeng, K. C., Jan, F. J., and Deng, W. E. 2012. Specific characters of 16S rRNA gene and 16S–23S rRNA internal transcribed spacer sequences of Xylella fastidiosa pear leaf scorch strains. Eur. J. Plant Pathol. 132:203-216. Schaad, N. W., Postnikova, E., Lacy, G., Fatmi, M., and Chang, C. J. 2004. Xylella fastidiosa subspecies: X. fastidiosa subsp. piercei, subsp. nov., X. fastidiosa subsp. multiplex subsp. nov., and X. fastidiosa subsp. pauca subsp. nov. Syst. Appl. Microbiol. 27:290-300. Severin, H.H.P. 1949. Transmission of the virus of Pierce’s disease of grapevines by leafhoppers. Hilgardia 19: 190-206. Severin, H.H.P. 1950. Spittle-insect vectors of Pierce’s disease virus II. Life history and virus transmission. Hilgardia19: 357-381. Stemke, G. W. and Robertson, J. A. 1982. Comparison of two methods for enumeration of mycoplasmas. J. Clin. Microbiol. 16: 959–961. Thorne, E. T., Young, B. M., Young, G. M., Stevenson, J. F., Labavitch, J. M., Matthews, M. A., and Rost, T. L. 2006. The structure of xylem vessels in grapevine (Vitaceae) and a possible passive mechanism for the systemic spread of bacterial disease. Am. J. Bot. 93: 497-504. Travensolo, R. F., Carareto-Alves, L. M., Costa1, M. V.C.G. Lopes, T. J.S., Carrilho, E. and Lemos, E. G. M. 2009. Xylella fastidiosa gene expression analysis by DNA microarrays. Genetics and Molecular Biology 32:340-353. Wells, J. M., Raju, B. C., Nyland, G., and Lowe, S. K. 1981. Medium for isolation and growth of bacteria associated with plum leaf scald and phony peach diseases. Appl. Environ. Microbiol. 42:357-363. Wells, J. M., Raju, B. C., Hung, H. Y., Weisburg, W. G., Mandelco-Paul, L., and Brenner, D. J. 1987. Xylella fastidiosa gen. nov., sp. nov: Gram-Negative, Xylem-Limited, Fastidious Plant Bacteria Related to Xanthomonas spp. Int. J. Sys. Evol. Microbiol. 37:136-143.
摘要: Xylella fastidiosa Wells (Xf) 為一植物導管侷限細菌,可感染多種重要經濟作物並造成病害,如葡萄皮爾斯病 (Pierce''s disease, PD),自然界中,此菌可藉由昆蟲傳播。而在台灣,Xf則為梨葉緣焦枯病 (Pear leaf scorch disease, PLS)及葡萄皮爾斯病 (Pierce''s disease, PD)的病原菌。本實驗利用由台灣梨樹分離之Xylella fastidiosa菌株 PLS 235、PLS 244及由葡萄分離之PD 5-1-2、GM菌株,分別對梨樹 (Pyrus pyrifolia)、蟛蜞菊 (Wedelia trilobata)、菸草 (Nicotiana tabacum) 及日日春 (Catharanthus roseus) 進行接種測試,以了解台灣分離之梨葉緣焦枯病菌與葡萄皮爾斯病菌是否能感染不同植物,以及病原菌可否在接種植物導管中移行。梨樹接種PLS及PD菌株之接種測試只於初次分離實驗中出現一次PCR正反應,並且無法從葉柄中分離出病原菌;蟛蜞菊之葉柄病原菌分離與PCR檢測結果皆為無檢出,顯示其並非Xylella fastidiosa之寄主;另菸草及日日春接種試驗中,四菌株皆分別有PCR 檢測正反應之樣本,且可從葉柄中成功分離病原菌,顯示台灣分離之 X. fastidiosa 可在菸草及日日春中生長並在導管中進行系統性移行。在實驗的過程中,發現上述四種接種的植物並未出現病徵,與接種水的對照組外觀上無明顯差異,可能與接種植物之生長環境與營養供給有關,又或許 Xf 菌株確實不會在這些測試植物中顯現病徵,而這些假設均需更進一步實驗才能證明。另外,為測試此四種菌株的培養營養需求,以Color changing units (CCU)方式分別測試PD2培養基中的Succinate、Trisodium citrate、MgSO4、Hemin Cl及Bovine serum albumin (BSA) 是否為其生長必需成分。結果顯示PLS 235、PLS 244、PD 5-1-2及GM等 Xf 菌株可在無添加succinate的培養基生長,但移除 PD2 中的 MgSO4後,PLS 235、PLS 244 及GM等菌株的生長狀況明顯較差,顯示在試管中培養 Xf 菌株時需添加適量 MgSO4。PD及PLS菌株於去除trisodium citrate之PD2培養基中生長狀況良好,顯示此成分可能並非生長必需物質。而在去除succinate及citrate的培養基中,細菌完全無法生長,但可以在添加malate或α-ketoglutarate後回復。在移除Bovine serum albumin (BSA) 的 PD2 培養基,PLS 及 PD 菌株的生長明顯降低。測試不同濃度 BSA 對 Xf 菌株的生長時,發現降低 BSA 濃度至0.4 g/L 可促進細菌的生長。由營養需求測試結果可知 PLS 與 PD 菌株中存在菌株間生理及生化特性的差異,經由適當的調整培養基中的成分,可達到促進不同植物來源的Xf菌株在培養基上生長的目的。
Xylella fastidiosa is a xylem-limited bacterium (XLB); it causes many diseases on a wide host range of plant, including Pierce’s disease of grapevine. In nature, the bacterium is transmitted by insect vectors. In Taiwan, Xylella fastidiosa is the causal bacterium of pear leaf scorch disease (PLS) and Pierce’s disease (PD). To understand if the bacterium infects other plants, i.e. it can migrate within the xylem vessels or cause Xf-elicited disease symptoms, X. fastidiosa pear strains PLS 235, PLS 244 and grape strain PD 5-1-2 and GM were used to inoculate pear (Pyrus pyrifolia), periwinkle (Catharanthus roseus), tobacco (Nicotiana tabacum) and wedelia (Wedelia trilobata) by stem-stabbing method to find out the possible alternative hosts of X. fastidiosa in Taiwan. The inoculation of pear with PLS and PD strains showed only one PCR positive result in the first recovery of pear petioles, and no bacteria can be re-isolated from the inoculated pears. In wedelia, PLS bacteria cannot be detected by PCR in or recovered from petiole elutents, indicating that wedelia is not a host of PLSB. The results of PCR detection and bacterial isolation showed that X. fastidiosa strain PLS 235, PLS 244, PD 5-1-2 and GM can infected and migrate within the xylem vessels of tobacco and periwinkle plants, indicating that tobacco and periwinkle might be alternative host plants of Taiwan-isolated X. fastidiosa. However, Xf strains did not elicit apparent disease symptom on tobacco or periwinkle, which might be due to the inappropriate environmental conditions where the inoculated plants were kept. For testing in-vitro nutrient requirements of PD and PLS bacteria, a color changing unit (CCU) method was applied to test the ingredients of disodium succinate, trisodium citrate, MgSO4, hemin Cl and bovine serum albumin (BSA) in PD2 medium. The results showed that all tested Xf strains can grow in PD2 medium without succinate, but the growth of PLS235, PLS244 and GM strains of Xf were greatly compromised without the addition of MgSO4 , indicating that MgSO4 is essential for culturing Xf. In the modified PD2 medium without succinate and citrate, bacterial growth was completely halted, and the growth can be restored by replacing succinate and citrate with malate or α-ketoglutarate. Removal of bovine serum albumin (BSA) from PD2 medium compromised the Xf growth. Moreover, the concentration of BSA in PD2 medium can be adjusted to 0.4 g/L to promote the growth of PLS bacteria. Taken together, the nutrient requirement tests reveal strain-specific physiological and biochemical properties among Xf PLS and PD bacteria. Adjustment of the nutrients will optimize the formulation of a culture medium to promote the growth of Xf bacteria from different plant hosts.
其他識別: U0005-2308201222021400
Appears in Collections:植物病理學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.