Please use this identifier to cite or link to this item:
標題: 奈米物質對西瓜蔓割病菌與蔬菜種子發芽及幼苗生長之影響
Effects of nanomaterials on Fusarium oxysporum f. sp. niveum, seed germination and seedling growth of vegetables
作者: 劉詠汶
Liu, Yong-Wen
關鍵字: 奈米材料
antimicrobial activity
plant growth
出版社: 植物病理學系所
引用: Adams, L. K., Lyon, D. Y. and Alvarez, P. J. J. 2006. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research 40: 3527-3532. Aguilar-Mendez, M. A., San Martin-Martinez, E., Ortega-Arroyo, L., Cobian-Portillo, G. and Sanchez-Espindola, E. 2011. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. Journal of Nanoparticle Research 13: 2525-2532. Asli, S. and Neumann, P. M. 2009. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell and Environment 32: 577-584. Aubin-Tam, M.-E. and Hamad-Schifferli, K. 2008. Structure and function of nanoparticle-protein conjugates. Biomedical Materials 3: 034001. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254. Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M. F. and Fievet, F. 2006. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters 6: 866–870. Carvalho, F. P. 2006. Agriculture, pesticides, food security and food safety. Environmental Science and Policy 9: 685-692. Choudhury, S. R., Ghosh, M., Mandal, A., Chakravorty, D., Pal, M., Pradhan, S. and Goswami, A. 2011. Surface-modified sulfur nanoparticles: an effective antifungal agaisnt Aspergillus niger and Fusarium oxysporum. Applied Microbiology and Biotechnoloy 90: 733-743. Corradini, E., de Moura, M. R. and Mattoso, L. H. C. 2010. A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. eXPRESS Polymer Letters 4: 509-515. Cortes, J. C. G., Ishiguro, J., Duran, A. and Ribas, J. C. 2002. Localization of the (1,3)β-D-glucan synthase catalytic subunit homologue Bgs1p/Cps1p from fission yeast suggests that it is involved in septation, polarized growth, mating, spore wall formation and spore germination. Journal of Cell Science 115: 4081-4096. Cui, H., Sun, C., Liu, Q., Jiang, J. and Gu, W. 2010. Applications of nanotechnology in agrichemical formulation: perspectives, challenges and strategies. Pages 105-110 in: International Conference on Food and Agriculture Applications of Nanotechnology. FAO, Sao-Pedro. Davidse, L. C. and Flach, W. 1977. Differential binding of methyl benzimidazol-2-yl carbamate to fungal tubulin as a mechanism of resistantce to this antimitotic agent in mutant strains of Aspergillus nidulans. The Journal of Cell Biology 72: 174-193. Elechiguerra, J. L., Burt, J. L., Morones, J. R., Camacho-Bragado, A., Gao, X., Lara, H. H. and Yacaman, M. J. 2005. Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology 3: 6. El-Temsah, Y. S. and Joner, E. J. 2012. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environmental Toxicology 27: 42-49. Fabrega, J., Fawcett, S. R., Renshaw, J. C. and Lead, J. R. 2009. Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environmental Science and Technology 43: 7285-7290. Fujiwara, K., Suematsu, H., Kiyomiya, E., Aoki, M., Sato, M. and Moritoki, N. 2008. Size-dependent toxicity of silica nano-particles to Chlorella kessleri. Journal of Environmental Science and Health Part A 43: 1167-1173. George, S., Lin, S., Ji, Z., Thomas, C. R., Li, L. J., Mecklenburg, M., Meng, H., Wang, X., Zhang, H., Tian, X., Hohman, J. N., Lin, S., Zink, J. I., Weiss, P. S. and Nel, A. E. 2012. Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. American Chemical Society Nano 6: 3745-3759. Ghormade, V., Deshpande, M. V. and Paknikar, K. M. 2011. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances: 792-803. Guan, H., Chi, D., Yu, J. and Li, X. 2008. A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-imidacloprid. Pesticide Biochemistry and Physiology 92: 83-91. Hartland, R. P., Fontaine, T., Debeaupuis, J. P., Simenel, C., Delepierre, M. and Latge, J. P. 1996. A novel β-(1-3)-glucanosyltransferase from the cell wall of Aspergillus fumigatus. The Journal of Biological Chemistry 271: 26843-26849. He, L., Liu, Y., Mustapha, A. and Lin, M. 2011. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research 166: 207-215. Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L. and Yang, P. 2005. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research 105: 269-279. Huang, Z., Zheng, X., Yan, D., Yin, G., Liao, X., Kang, Y., Yao, Y., Huang, D. and Hao, B. 2008. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24: 4140–4144. Jo, Y. K., Kim, B. H. and Jung, G. 2009. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Disease 93: 1037-1043. Jones, N., Ray, B., Ranjit, K. T. and Manna, A. C. 2008. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. Federation of European Microbiological Societies Microbiology Letters 279: 71-76. Joseph, T. and Morrison, M. 2006. Nanotechnology in agriculture and food. Retrieved from: Kang, S., Mauter, M. S. and Elimelech, M. 2008. Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environmental Science and Technology 42: 7528-7534. Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F. and Biris, A. S. 2009. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. American Chemical Soceity Nano 3: 3221-3227. Khodakovskaya, M. V., de Silva, K., Nedosekin, D. A., Derivishi, E., Biris, A. S., Shashkov, E. V., Galanzha, E. I. and Zharov, V. P. 2011. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proceedings of the National Academy of Sciences, USA 108: 1028-1033. Knievel, D. P. 1973. Procedures for estimating ratio of live or dead root dry matter in root core samples. Crop Science 13: 124-126. Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R. and Dhawan, A. 2011. Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 83: 1124-1132. Kumari, M., Mukherjee, A. and Chadrasekaran, N. 2009. Genotoxicity of silver nanoparticles in Allium cepa. Science of the Total Environment 407: 5243-5246. Lai, F., Wissing, S. A., Muller, R. H. and Fadda, A. M. 2006. Artemisia arborescens L essential oil-load solid lipid nanoparticles for potential agricultural application: preparation and characterization. American Association of Pharmaceutical Scientists Pharmaceutical Science and Technology 7: E1-E9. Landa, P., Vankova, R., Andrlova, J., Hodek, J., Marsik, P., Storchova, H., White, J. C. and Vanek, T. 2012. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2 and fullerene soot. Journal of Hazardous Materials 241: 55-62. Lara, H. H., Ayala-Nunez, N. V., Ixtepan-Turrent, L. and Rodriguez-Padilla, C. 2010. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology 26: 615-621. Lee, Y. J., Kim, J., Oh, J., Bae, S., Lee, S., Hong, I. S. and Kim, S. H. 2012. Ion-release kinetics and ecotoxicity effects of silver nanoparticles. Environmental Toxicology and Chemistry 31: 155-159. Li, Z. Z., Chen, J. F., Liu, F., Liu, A. Q., Wang, Q., Sun, H. Y. and Wen, L. X. 2007. Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Management Science 63: 241-246. Liebman, M. and Sundberg, D. N. 2006. Seed mass affects the susceptibility of weed and crop species to phytotoxins extracted from red clover shoots. Weed Science 54: 340-345. Lin, D. and Xing, B. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution 150: 243-250. Lin, S., Reppert, J., Hu, Q., Hudson, J. S., Reid, M. L., Ratnikova, T. A., Rao, A. M., Luo, H. and Ke, P. C. 2009. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5: 1128-1132. Lisa, M., Chouhan, R. S., Vinayaka, A. C., Manonmani, H. K. and Thakur, M. S. 2009. Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichoroethan: An organochlorine pesticide. Biosensors and Bioeletronics 25: 224-227. Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔct method. Methods 25: 402-408. Lopez-Moreno, M. L., De La Rosa, G., Hernandez-Viezcas, J. A., Peralta-Videa, J. R. and Gardea-Torresday, J. L. 2010. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. Journal of Agriculture and Food Chemistry 58: 3689-3693. Lyon, D. Y., Adams, L. K., Falkner, J. C. and Alvarezt, P. J. 2006. Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environmental Science and Technology 40: 4360-4366. Maloy, O. C. 2005. Plant disease management. The Plant Health Instructor. DOI: 10.1094/PHI-I-2005-0202-01. Maness, P. C., Smolinski, S., Blake, D. M., Huang, Z., Wolfrum, E. J. and Jacoby, W. A. 1999. Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Applied and Environmental Microbiology 65: 4094-4098. Miao, A. J., Schwehr, K. A., Xu, C., Zhang, S. J., Luo, Z., Quigg, A. and Santschi, P. H. 2009. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environmental Pollution 157: 3034-3041. Michielse, C. B. and Rep, M. 2009. Pathogen profile update: Fusarium oxysporeum. Molecular Plant Pathology 10: 311-324. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31: 426-428. Mortimer, M., Kasemets, K., Heinlaan, M., Kurvet, I. and Kahru, A. 2008. High throughput kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles. Toxicology in Vitro 22: 1412–1417. Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Sigg, L. and Behra, R. 2008. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environmental Science and Technology 42: 8959-8964. Nel, A., Xia, T., Madler, L. and Li, N. 2006. Toxic potential of materials at the nanolevel. Science 311: 622-627. Panacek, A., Kolar, M., Vecerova, R., Prucek, R., Soukupova, J., Krystof, V., Hamal, P., Zboril, R. and Kvitek, L. 2009. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30: 6333-6340. Peng, X., Palma, S., Fisher, N. S. and Wong, S. S. 2011. Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquatic Toxicology 102: 186-196. Perez-de-Luque, A. and Rubiales, D. 2009. Nanotechnology for parasitic plant control. Pest Management Science 65: 540-545. Petica, A., Gavrilliu, S., Lungu, M., Buruntea, N. and Panzaru C. 2008. Colloidal silver solutions with antimicrobial properties. Materials Science and Engineering: B 152: 22-27. Premanathan, M., Karthikeyan, K., Jeyasubramanian, K., Manivannan, G. 2011. Selective toxicity of ZnO nanoparticles toward gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine: Nanotechnology, Biology and Medicine 7: 184-192. Priester, J. H., Ge, Y., Mielke, R. E., Horst, A. M., Moritz, S. C., Espinosa, K., Gelb, J., Walker, S. L., Nisbet, R. M., An, Y. J., Schimel, J. P., Palmer, R. G., Hernandez-Viezcas, J. A., Zhao, L., Gardea-Torresdey, J. L. and Holden, P. 2012. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proceedings of the National Academy of Sciences, USA 109: E2451-E2456. Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa J.R. and Gardea-Torresdey, J. L. 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agriculture and Food Chemistry 59: 3485-3498. Seibert, A. C. and Pearce, R. B. 1993. Growth analysis of weed and crop species with reference to seed weight. Weed Science 41: 52-56. Shah, V. and Belozerova, I. 2009. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water, Air, and Soil Pollution 197: 143-148. Sondi, I. and Salopek-Sondi, B. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science 275: 177-182. Stampoulis, D., Sinha, S. K. and White, J. C. 2009. Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science and Technology 43: 9473-9479. Stoimenov, P. K., Klinger, R. L., Marchin, G. L. and Klabunde, K. J. 2002. Metal oxide nanoparticles as bactericidal agents. Langmuri 18: 6679-6686. Su, H. L., Chou, C. C., Hung, D. J., Lin, S. H., Pao, I C., Lin, J. H., Huang, F. L., Dong, R. X., and Lin, J. J. 2009. The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30: 5979-5987. Su, H. L., Lin, S. H., Wei, J. C., Pao, I C., Chiao, S. H., Huang, C. C., Lin, S. Z. and Lin, J. J. 2011. Novel nanohybrids of silver particles on clay platelets for inhibiting silver-resistant bacteria. PLOS ONE 6: e21125. Suresh, A. K., Pelletier, D. A., Wang, W., Moon, J. W., Gu, B., Mortensen, N. P., Allison, D. P., Joy, D. C., Phelps, T. J. and Doktycz, M. J. 2010. Silver nanocrystallites: biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. Environmental Science and Technology 44: 5210-5215. Thakkar, K. N., Mhatre, S. S. and Parikh, R. Y. 2010. Biology synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 6: 257-262 Tiquia, S. M., Tam, N. F. Y. and Hodgkiss, I. J. 1996. Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environmental Pollution 93: 249-256. Torney, F., Trewyn, B. G., Lin, V. S. Y. and Wang, K. 2007. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology 2: 295-300. Wahab, R., Mishra, A., Yun, S. I., Kim, Y. S. and Shin, H. S. 2010. Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route. Applied Microbiology and Biotechnology 87: 1917-1925. Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. and Wright, I. J. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33: 125-159. Wu, B., Wang, Y., Lee, Y. H., Horst, A., Wang, Z., Chen, D. R., Sureshkumar, R. and Tang, Y. J. 2010. Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. Environmental Science and Technology 44: 1484-1489. Wu, H. S., Raza, W., Fan, J. Q., Sun, Y. G., Bao, W., and Shen, Q. R. 2008. Cinnamic acid inhibits growth but stimulates production of pathogenesis factors by in vitro cultures of Fusarium oxysporum f.sp. niveum. Journal of Agricultural and Food Chemistry 56: 1316-1321. Xia, X. R., Monteiro-Riviere, N. A. and Riviere J. E. 2010. An index for characterization of nanomaterials in biological systems. Nature Nanotechnology 5: 671-675. Yin, L., Cheng, Y., Espinasse, B., Colman, B. P., Auffan, M., Wiesner, M., Rose, J., Liu, J. and Bernhardt, E. S. 2011. More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environmental Science and Technlogy 45: 2360-2367. Zhang, H., Wu, M. and Sen, A. 2012. Silver nanoparticle antimicrobials and related materials. Pages 3-45 in: Nano-Antimicrobials. Cioffi, N. and Rai, M. , eds. Springer, New York. Zhang, Y. J., Yu, J. J., Zhang, Y. N., Zhang, X., Cheng, C. J., Wang, J. X., Hollomon, D. W., Fan, P. S. and Zhou, M. G. 2009. Effect of carbendazim resistance on trichothecene production and aggressiveness of Fusarium graminearum. Molecular Plant-Microbe Interactions 22: 1143-1150. Zheng, L., Hong, F., Lu, S. and Liu, C. 2005. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinash. Biological Trace Element Research 104: 83-91. Zhu, H., Han, J., Xiao, J. Q. and Jin, Y. 2008. Uptake, translocation, and accumulation of manufactured iron oxide by pumpkin plants. Journal of Environmental Monitoring 10: 713-717.
摘要: 物質大小介於 1-100 nm 之間會有新的特性,此尺寸大小的物質被稱為奈米材料。一些奈米材料被報導具有抗微生物的活性,具有潛力應用於農業上。然而奈米材料對於生物體會產生何種影響,目前我們所知甚少。本研究使用奈米矽片銀 (AgNP/NSP) 與奈米矽片 (NSP) 測試對西瓜蔓割病菌 Fusarium oxysporum f. sp. niveum (E. F. Smith) Snyder & Hansen 的影響,希望藉由瞭解奈米矽片銀與奈米矽片對西瓜蔓割病菌的影響及其作用機制,有助於將奈米材料應用於植物病害管理上。本研究顯示奈米矽片銀對西瓜蔓割病菌的抑制效果較奈米矽片強,奈米矽片銀可有效抑制西瓜蔓割病菌之菌絲生長、菌絲細胞活性及孢子活性。半胱氨酸為銀離子的螯合劑,添加半胱氨酸於奈米矽片銀、奈米矽片或硝酸銀中,僅會降低奈米矽片與硝酸銀對西瓜蔓割病菌的抑制效果,但不影響奈米矽片銀的抑菌效果。以掃描式電子顯微鏡觀察可知奈米矽片銀與奈米矽片會附著於西瓜蔓割病菌的表面,並造成細胞皺縮,而硝酸銀則無此現象,顯示奈米矽片銀的抑菌機制與硝酸銀不同。在酵素活性測試部分,奈米矽片銀與奈米矽片可與西瓜蔓割病菌的外泌蛋白質結合,並降低纖維素分解酵素的活性。奈米矽片銀可誘導西瓜蔓割病菌細胞壁合成相關基因 gas1 與 fks1的表現。本研究結果顯示奈米矽片銀與奈米矽片對於抑制西瓜蔓割病菌具有多層面的影響。本研究也建立奈米物質對植物生長的安全評估試驗,測試上述奈米材料對於萵苣、番茄及西瓜的影響,結果可知 100 ppm 奈米矽片銀對於萵苣、番茄與西瓜的種子發芽與幼苗生長具有抑制效果,尤其明顯抑制此三種植物幼苗根部的生長,顯示奈米矽片銀應用於作物病害管理上需要審慎思考其使用方式。奈米矽片銀與奈米矽片對於植物生長的影響仍有待後續進一步的測試。
Materials will have the new characteristics when their sizes are ranged in 1-100 nm. Materials in this size are defined as nanomaterials. Some nanomaterials were reported to pose antimicrobial activity. Nanomaterials have potential to be applied in agriculture. So far, we don’t know much about the effects of nanomaterials on organisms. In this study, we used silver nanoparticles on nano-scale silica platelets (AgNP/NSP) and nano-scale silica platelets (NSP) to test their effects on Fusarium oxysporum f. sp. niveum (E. F. Smith) Snyder & Hansen (Fon). Understanding the effects of nanomaterials on Fon and their possible mechanisms would be helpful to apply nanomaterials in plant disease management. The results showed that AgNP/NSP had stronger inhibitory effect on Fon than NSP. AgNP/NSP could inhibit hyphal growth, and reduce cell activity and spore bioactivity of Fon. After adding cysteine, which could bind silver ions, NSP and silver nitrate, but not AgNP/NSP, reduced their inhibitory effect of Fon. Results of scanning electron microscopy revealed that both AgNP/NSP and NSP, but not silver nitrate, could attach on the cell surface of Fon and cause cell shrinkage. It indicates that AgNP/NSP has different inhibitory mechanism from its bulk materials, silver nitrate, on Fon. In enzyme activity assay, both AgNP/NSP and NSP could absorb secreted proteins of Fon and reduced cellulase activity was observed in the secreted proteins of Fon. AgNP/NSP could induce gas1 and fks1 gene expression of F. oxysporum, both genes are involved in fungal cell wall synthesis. The results suggested that AgNP/NSP and NSP may have multiple inhibitory mechanisms on Fon. In this study, to establish the safety test about the impact of nanomaterials on plant growth, the effects of AgNP/NSP and NSP were tested on lettuce, tomato, and watermelon. AgNP/NSP showed negative effects on seed germination and seedling growth of lettuce, tomato, and watermelon at 100 ppm. The root growth of the tested seedlings was significantly inhibited. It indicates that AgNP/NSP should be used carefully in plant disease management. Effects of AgNP/NSP and NSP on plant growth need to be further tested in the future.
其他識別: U0005-2308201310340000
Appears in Collections:植物病理學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.