Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31947
標題: 探討奈米矽片對草莓灰黴病菌與炭疽病菌生長之影響
Effect of nanosilicate platelets on growth of Botrytis cinerea and Colletotrichum gloeosporioides from strawberry
作者: 黃盈潔
Huang, Ying-Jie
關鍵字: 奈米矽片
nanosilicate platelet
草莓灰黴病菌
草莓炭疽病菌
細胞電位
電解質滲漏
Botrytis cinerea
Colletotrichum gloeosporioides
zeta potential value
electrolyte leakage
出版社: 植物病理學系所
引用: Arroyo, F. T., Moreno, J., Daza P., Torreblanca, J., and Romero, F. 2011. Differential pathogenic response in strawberry tissues and organs by Colletotrichum acutatum. Journal of Agricultural Science and Technology 5: 393-398. Benefield, L. D., Judkins, J. F., and Weand, B. L. 1982. Process chemistry for water and wastewater treatment. New Jerseye: Prentice-Hall Press, 510 pp. Bromilow, R. H., Evans, A. A., and Nicholls, P. H. 1999. Factors affecting degradation rates of five triazole fungicides in two soil types: laboratory incubations. Pesticide Science 55:1129-1134. Chen, L. S., Chung, W. C., and Chung, W. H. 2009. Sensitivity of Botrytis Cinerea of strawberry to strobilurins (QoIs) in Taiwan. Plant Pathology Bulletin 18: 88-99. (In Chinese) Cheng, K. M., Huang, S. Q., and Peng, S. Z. 2011. The integrated pest management techniques of strawberry. Miaoli Agricultural Bulletin 56: 7-8. (In Chinese) Chung, W. H., Chung, W. C., Peng, M. T., Yang, H. R., and Huang, J. W. 2010. Specific detection of benzimidazole resistance in Colletotrichum gloeosporioides from fruit crops by PCR-RFLP. New Biotechnology 27: 17-24. Corbett, J., Mckeown, P. A., Peggs, G. N., and Whatmore, R., 2000. Nanotechnology: international developments and emerging products. CIRP Annals - Manufacturing Technology 49: 523-545. Council of Agriculture, Executive Yuan. 2013. An annual report of agricultural statistics in 2011. Taiwan: Council of Agriculture, Executive Yuan, pp.73. Dimkpa, C. O., McLean, J. E., Martineau, N., Britt, D. W., Haverkamp, R., and Anderson, A. J. 2013. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a and matrix. Environmental Science & Technology 47: 1082-1090. Dong, Q. H., and Zhu, D. X. 2008. The questions and answers in cultivation techniques of strawberry. China: China Agricultural University Press, 306 pp. Eichert, T., Kurtz, A., Steiner, U., and Goldbach, H. E. 2008. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiologia Plantarum 134: 151-160. Fei, W. C., and Wang, Y. 2010. Plant protection manual-fruit trees. Taichung: Taichung District Agricultural Research and Extension Station Press, 297 pp. Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., and Kim, J. O. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research 52: 662-668. Feynman, R. 1960. There’s plenty of room at the bottom: an invitation to enter a new field of physics. Caltech Engineering and Science 23: pp. 22-36. Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., and Rai, M. 2009. Fungus- mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine-Nanotechnology Biology and Medicine 5: 382-386. George, S., Lin, S. J., Jo, Z. X., Thomas, C. R., Li, L. J., Mecklenburg, M., Meng, H., Wang, X., Zhang, H. Y., Xia, T., Hohman, J. N., Lin, S., Zink, J. I., Weiss, P. S., and Nel, A. E. 2012. Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. Acs Nano 6: 3745-3759. He, L. L., Liu, Y., Mustapha, A., and Lin, M. S. 2011. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research 166: 207-215. Hsu, S. H., Tseng, H. J., Hung, H. S., Wang, M. C., Hung, C. H., Li, P. R., and Lin, J. J. 2009. Antimicrobial activities and cellular responses to natural silicate clays and derivatives modified by cationic alkyl amine salts. ACS Applied Material and Interfaces 1: 2556-2564. Jiang, W., Mashayekhi, H., and Xing, B. S. 2009. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environmental Pollution 157: 1619-1625. Jo, Y. K., Kim, B. H., and Jung, G. 2009. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Disease 93: 1037-1043. Kim, H. J., Park, H. J., and Choi, S. H. 2011. Antimicrobial action effect and stability of nanosized silica hybrid Ag complex. Journal of Nanoscience and Nanotechnology 11: 5781-5787. Kim, S. H., Lee, H. S., Ryu, D. S., Choi, S. J., and Lee, D. S. 2011. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean Journal Microbiology and Biotechnology 39: 77-85. Kim, S. W., Kim, K. S., Lamsal, K., Kim, Y. J., Kim, S. B., Jung, M., Sim, S. J, Kim, H. S., Chang, S. J., Kim, J. K., and Lee, Y. S. 2009. An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. Journal of Microbiology and Biotechnology 19: 760-764. Kim, S. W., Nam, S. H., and An, Y. J. 2012. Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans. Ecotoxicology and Environmental Safety 77: 64-70. Kong, H. and Jang, J. 2008. Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticle. Langmuir 24: 2051-2056. Lamsal, K., Kim, S. W., Jung, J. H., Kim, Y. S., Kim, K. S., and Lee, Y. S. 2011. Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39: 194-199. Li, F. Z. 2005. The control strategies of gray mold in strawberry. Hualien Agricultural Bulletin 54: 12-13. (In Chinese) Li, P. R., Wei, J. C., Chiu, Y. F., Su, H. L., Peng, F. C., and Lin, J. J. 2010. Evaluation on cytotoxicity and genotoxicity of the exfoliated silicate nanoclay. ACS Applied Materials & Interfaces 2: 1608-1613. Li, Y. H., and Leu, L. S. 1994. Anthracnose of the strawberry in Taiwan. Plant pathology Bulletin 3: 256-257. (In Chinese) Li, Z. Z., Chen, J. F., Liu, F., Liu, A. Q., Wang, Q., Sun, H. Y., and Wen, L. X. 2007. Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Management Science 63: 241-246. Lin, J. J., Chu, C. C., Chiang, M. L., and Tsai, W. C. 2006. First isolation of individual silicate platelets from clay exfoliation and their unique self-assembly into fibrous arrays. Journal of Physical Chemistry B 110: 18115-18120. Lin, P. L. 2005. The accumulation of heat shock proteins in rice plants and their roles in protecting the rice rice seedlings from heat and oxidative stresses. Taichung: National Chung Hsing University Master Thesis, pp.13-14. (In Chinese) Liu, S. B., Wei, L., Hao, L., Fang, N., Chang, M. W., Xu, R., Yang, Y. H., and Chen, Y. 2009. Sharper and faster "nano darts" kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3: 3891-3902. Liu, Y., Yan, L., Heiden, P., and Laks, P. 2001. Use of nanoparticles for controlled release of biocides in solid wood. Journal of Applied Polymer Science 79: 458-465. Maas, J. L. 1984. Compendium of strawberry diseases. Minnisota: APS Press, pp. 138-139. Ma, Z. J. 2003. Principles and applications of nanomaterials technology. Taiwan: Chuan Haw Science and Technology Book Company Press, 488 pp. Mazumdar, H., and Ahmed, G. U. 2011. Phytotoxicity effect of silver nanoparticles on Oryza sativa. International Journal of ChemTech Research 3: 1494-1500. Moran, J. and Addy, M.1984.The effect of surface adsorption and staining reactions on the antimicrobial properties of some cationic antiseptic mouthwashes. Journal of periodontology 55: 278-282. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramirez, J. T., and Yacaman, M. J. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346-2353. Mude, N., Ingle, A., Gade, A., and Rai, M. 2009. Synthesis of silver nanoparticles using callus extract of carica papaya - a first report. Journal of Plant Biochemistry and Biotechnology 18: 83-86. Murphy, C. J. 2002. Materials science: nanocubes and nanoboxes. Science 298:2139-2141. Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., and Kumar, D. S. 2010. Nanoparticulate material delivery to plants. Plant Science 179: 154-163. Norman, D. J., and Chen, J. J. 2011. Effect of foliar application of titanium dioxide on bacterial blight of Geranium and Xanthomonas leaf spot of Poinsettia. Hortscience 46: 426-428. Park, H. J., Kim, S. H., Kim, H. J., and Choi, S. H. 2006. A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathology Journal 22: 295-302. Peetla, C., and Labhasetwar, V. 2009. Effect of molecular structure of cationic surfactants on biophysical interactions of surfactant-modified nanoparticles with a model membrane and cellular uptake. Langmuir 25: 2369-2377. Piret, J., Lamontagne, J., Bestman-Smith, J., Roy, S., Gourde, P., Desormeaux, A., Omar, R. F., Juhasz, J., and Bergeron, M. G. 2000. In vitro and in vivo evaluations of sodium lauryl sulfate and dextran sulfate as microbicides against herpes simplex and human immunodeficiency viruses. Journal of Clinical Microbiology 38: 110-119. Prasad, T., Kambala, V. S. R., and Naidu, R. 2011. A critical review on biogenic silver nanoparticles and their antimicrobial activity. Current Nanoscience 7: 531-544. Stoimenov, P. K., Klinger, R. L., Marchin, G. L., and Klabunde, K. J. 2002. Metal oxide nanoparticles as bactericidal agents. Langmuir 18: 6679-6686. Su, H. L., Chou, C. C., Hung, D. J., Lin, S. H., Pao, I. C., Lin, J. H., Huang, F. L., Dong, R. X., and Lin, J. J. 2009. The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30: 5979-5987. Taniguchi, N. 1974. On the basic concept of nanotechnology. In Proceeding of International Conference on Production Engineering (ICPE). Tokyo, Japan, 18-23. Taniguchi, N., Kohno, T., Maruyama, K., Iizuka, K., Miyamoto, I., and Dohi, T. 1996. Nanotechnology: integrated processing systems for ultra-precision and ultra-fine products. USA: Oxford University Press, 424 pp. Tsai, S. S., and Sun, G. J. 2009. Introduction of nanotechnology: fundamentals and applications. Taipei: New Wun Ching Developmental Publishing Co., Ltd Press, 518 pp. Vieira, O. V., Hartmann, D. O., Cardoso, C. M. P., Oberdoerfer, D., Baptista, M., Santos, M. A. S., Almeida, L., Ramalho-Santos, J., and Vaz, W. L. C. 2008. Surfactants as microbicides and contraceptive agents: a systematic in vitro study. Plos One 3: 1-12. Wang, H. H., Wick, R. L., and Xing, B. S. 2009. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environmental Pollution 157: 1171-1177. Wang, M. C., Lin, J. J., Tseng, H. J., and Hsu, S. H. 2012. Characterization, antimicrobial activities, and biocompatibility of organically modified clays and their nanocomposites with polyurethane. ACS Applied Materials and Interfaces 4: 338-35 Yang, X., and Zhang, H. 2012. Synergistic interaction of tea saponin with mancozeb against Pestalotiopsis theae. Crop Protection 40: 126-131.
摘要: Agricultural chemicals are commonly used in controlling plant diseases. However, the fungicide resistance, residue and its environmental impact are serious problems of agriculture. Previous studies demonstrated that the nanomaterials with special physical and chemical properties showed activity against microbes and used to control plant diseases. In this study, eleven nanomaterials, including nanosilicate platelets (4), nano-silvers (3) and carbon nanotubes (5), were tested for their ability on the inhibition of the growth of plant pathogens. Results demonstrated that the nanosilicate platelets NSS1450 and NSS3150 were found most effective in inhibiting the growth of plant pathogens.The inhibition in spore germination was 99.2% to 100.0% for Botrytis cinerea and 84.0% to100.0% for Colletotrichum gloeosporioides in the treatment of NSS1450 for 1hr at ≧50 mg/L and the efficacy increased following the treatment time. The NSS3150 treatment was lower inhibitory effect on spore germination than tested with NSS1450. For mycelial growth inhibition test, the NSS1450 showed 60.2% to 100.0 % inhibition in B. cinerea and 26.2% to 89.3% in C. gloeosporioides at ≧500 mg/L, respectively. The NSS3150 had the inhibition of 43.0% to 100.0% in B. cinerea and 49.9% to 80.8% in C. gloeosporioides at ≧500 mg/L, respectively. In addition, the surfactant of NSS1450 had no inhibitory effect against mycelial growth of B. cinerea and C. gloeosporioides; however, the surfactant of NSS3150 showed good efficacy at ≧250 mg/L. In this study, themix of azoxystrobin or carbendazim and NSS1450 (100, 500 and 1,000 mg/L) could increase the inhibition activity on mycelial growth of azoxystrobin- or carbendazim-resistant isolates which is of 39.8% to 100.0% or 2.9% to 45.4%, respectively. On the other side, the azoxystrobin or carbendazim mixed with NSS3150 (100, 500 and 1,000 mg/L) could increase the inhibition activity on mycelial growth of azoxystrobin- or carbendazim-resistant isolates which is of 1.4% to 100.0% or 4.9% to 78.4%, respectively. The inoculation test on detached strawberry leaves showed that the NSS1450 alone or mixed with azoxystrobin or carbendazim were efficacy in reducing the disease severitites caused by B. cinerea or C. gloeosporioides. Moreover, the inoculation test also indicated that sparyed with NSS1450 after inocualtion has higher efficacy on decreasing the disease severities. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) observation showed that the spores and hyphae of B. cinerea and C. gloeosporioides had shrinkage and distortion after treatment with 100 mg/L NSS1450, and the cytoplasm and organelles also showed severely depredation after treatment with 100 and 1,000 mg/L NSS1450. The zeta potential values revealed that B. cinerea and C. gloeosporioides showed negative from -14.4 to -30.7 mv. The electrolyte leakage test further demonstrated that the spores and hyphae of B. cinerea and C. gloeosporioides were leakage after treatment with 1,000 mg/L either NSS1450 or NSS3150. These results indicated that positive zeta potential of NSS1450 might easily be adsorbed by the spores and hyphae with negative zeta potential resulting in damage in spores and hyphae, leakage or interrupted cellular processes such as metabolism or respiration. It is necessary to carry out the mechanisms of the nanosilicate platelets on damaging the pathogens in the future. Moreover, the application method should be examined more times in greenhouse and field conditions.
目前化學農藥為主要防治植物病害策略之一,然而農藥抗藥性、殘留及對環境造成危害是現今農業的嚴重問題。由於奈米材料 (nanomaterials) 具特殊的物理與化學性質,前人研究證實多種常見的奈米材料具有抑制微生物生長效果。本研究初步篩選11種奈米材料,包括4種奈米矽片 (nanosilicate platelets)、3種奈米銀 (nanosized silica-silver) 及5種奈米碳管 (nanosized carbon nanotubes) 於抑制植物病原菌生長能力,結果顯示奈米矽片NSS1450與NSS3150抑制病原菌生長能力最佳。於評估抑制孢子發芽測試中得知,處理≧50 mg/L之NSS1450 1小時後,可分別抑制草莓灰黴病菌 (Botrytis cinerea) 與炭疽病菌 (Colletotrichum gloeosporioides) 的孢子發芽達99.2 -100.0%與84.0-100.0%,且隨處理時間增長,抑制孢子發芽效果越明顯。當處理NSS3150濃度增高時,抑制部分灰黴病菌與炭疽病菌孢子發芽效果越明顯,然而隨處理時間增長,無明顯增加抑制孢子發芽效果。於抑制菌絲生長測試中,添加≧500 mg/L之NSS1450於馬鈴薯葡萄糖瓊脂培養基時,可分別抑制灰黴病菌與炭疽病菌菌絲生長達60.2-100%與26.2-89.3%;而處理≧500 mg/L之NSS3150後,可分別抑制灰黴病菌與炭疽病菌菌絲生長達43.0-100.0%與49.9-80.8%。奈米矽片之界面活性劑對抑制兩菌菌絲生長測試,處理≧1,000 mg/L之NSS1450的界面活性劑後,無法明顯抑制灰黴病菌與炭疽病菌菌絲生長;而≧250 mg/L之NSS3150之界面活性劑,則可有效抑制此兩病菌菌絲生長。評估奈米矽片混合殺菌劑抑制兩菌菌絲生長測試中指出,將≧100 mg/L之NSS1450添加於含不同有效濃度之亞托敏培養基時,可提升抗亞托敏灰黴病菌株菌絲生長抑制率達39.8-100.0%;而添加≧100 mg/L之NSS1450於含不同有效濃度之貝芬替培養基時,可提升抗貝芬替炭疽病菌株菌絲生長抑制率達2.9-45.4%。另添加NSS3150部分,將≧100 mg/L之NSS3150添加於含不同有效濃度之亞托敏培養基時,可提升抗亞托敏灰黴病菌株菌絲生長抑制率達1.4-100.0%;而添加≧100 mg/L之NSS3150於含不同有效濃度之貝芬替培養基時,則可提升抗貝芬替炭疽病菌株菌絲生長抑制率達4.9-78.4%。以離葉接種法評估奈米矽片NSS1450與殺菌劑添加NSS1450防治草莓灰黴病與炭疽病之結果,顯示處理100 mg/L之NSS1450或殺菌劑添加NSS1450後,可有效降低抗藥性病原菌的罹病度,達延緩病害的效果,且以接種病原菌後再施用NSS1450具有較佳防治效果。利用掃描式電子顯微鏡觀察處理12小時100 mg/L與1,000 mg/L之NSS1450後的草莓灰黴菌與炭疽菌孢子與菌絲,得知兩菌之分生孢子外觀產生皺縮凹陷現象,菌絲則外觀變形,嚴重時縊縮扭曲。而穿透式電子顯微鏡觀察結果更指出,GBS1-104與CSG7-3菌株之分生孢子處理24小時100、1,000 mg/L之NSS1450後,內部細胞質濃縮現象明顯,且細胞質與胞器皆無法辨認,甚至部分孢子呈現液胞化 (vacuolation),而菌絲內部細胞質與胞器亦明顯遭受到破壞且無法辨認。此外以動態光散射儀 (dynamic light scattering) 測定草莓灰黴病菌與炭疽病菌之界面電位結果顯示,所測試之菌株病原菌的界面電位值為-14.4~-30.7 mv。電解質滲漏測試的結果顯示,草莓灰黴病菌與炭疽病菌孢子與菌絲處理1,000 mg/L之NSS1450與NSS3150後,孢子或菌絲皆可能產生滲漏現象。由上述結果推測,界面電位帶正電之奈米矽片NSS1450可能較易被吸附而累積在帶負電位的孢子或菌絲的表面,導致细胞内活性氧 (reactive oxygen species, ROS) 反應,破壞孢子或菌絲內外的完整性或改變孢子或菌絲內部之滲透壓,造成細胞的滲漏,而干擾孢子與菌絲內部的代謝或呼吸作用。然奈米矽片對植物病原真菌詳細之抑菌機制,未來須進一步的探討。另施用奈米矽片的時機與方法,需於溫室或田間條件進行更多次的實驗。
URI: http://hdl.handle.net/11455/31947
其他識別: U0005-0908201314432900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0908201314432900
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.