Please use this identifier to cite or link to this item:
標題: 枯草桿菌TKS1-1於十字花科蔬菜黑斑病防治 之應用潛力與作用機制
Biological control of Alternaria Leaf Spot on Crucifers by Bacillus subtilis TKS1-1 strain potential application and mode of action
作者: 郭芝延
Kuo, Chih-Yen
關鍵字: 枯草桿菌
Bacillus subtilis
Alternaria brassicicola
Iturin A
出版社: 植物病理學系所
引用: 王喻其、王泰權、陳富翔、蔡永勝、李宏萍、費雯綺。2012。植物保護手冊。行政院農業委員會農業藥物毒物試驗所編印。1080 pp。 王詩雯。2002。拮抗性桿菌屬(Bacillus spp.)於水稻白葉枯病防治之應用及其作用機制。國立中興大學植物病理學系碩士論文。84 pp。 江迪蔚。2006。枯草桿菌 Bacillus subtilis WG6-14 於檬果黑斑病防治之應用潛力與作用機制。國立中興大學植物病理學系碩士論文。79 pp。 行政院農委會。2012。101年農業統計年報。 吳佳樺。2010。聚麩胺酸量產於枯草桿菌特殊功能生物殺菌劑發展之應用。國立中興大學植物病理學系碩士論文。68 pp。 呂冠民。2011。柑橘潰瘍病菌生物膜與致病性及枯草桿菌群於其生物防治應用機制。國立中興大學植物病理學系碩士論文。84 pp。 李雅惠。2002。拮抗性桿菌屬(Bacillus spp.) 之分離、培養與抗生活性之改進以及病害防治之應用。國立中興大學植物病理學系碩士論文。79 pp。 林秀芬、陳滄海、劉顯達。2010。枯草桿菌Bacillus subtilis BS-99-H之iturin A 抗菌物質對蓮霧果腐病原菌 Pestalotiopsis eugeniae 之生物活性。植物病理學會刊。19:25-233。 林漢釗。2006。益生性枯草桿菌 Bacillus subtilis WG6-14 在水稻栽培與病害管理上之應用性。國立中興大學植物病理學系碩士論文。152 pp。 邱燕欣。2004。拮抗性枯草桿菌Bacillus subtilis WG-16 菌株於柑橘潰瘍病防治應用。國立中興大學植物病理學系碩士論文。92 pp。 倪蕙芳。1992。枯草桿菌Baillus subtilis PB-113菌株所產生抗生物質之理化與生物特性研究。國立中興大學植物病理學系碩士論文。91 pp。 莊雅蓉。2010。馬鈴薯瘡痂病—病原菌於水稻田中殘存之可能性與可行之病害管理策略。國立中興大學植物病理學系碩士論文。 60 pp。 陳俊位。2000。生物農藥枯草桿菌在植物病害防制上之應用。台中區農業專訊26:9-21。 陳俊位、鄧雅靜、曾德賜。2009。功能性微生物製劑在有機作物栽培病害管理上之應用。有機農業產業發展研討會專輯--特刊96號。34 pp。 黃巧雯。2008。台灣馬鈴薯瘡痂病病原菌 Streptomyces scabies 之重要生物特 性及其應用拮抗枯草桿菌屬於其生物防治之初探。國立中興大學植物病理學系碩士論文。91 pp。 廖龍盛。2005。實用農藥(全新修訂第八版)。得利興業股份有限公司研發部。1311 pp。 謝廷芳、黃晉興、謝麗娟、胡敏夫、柯文雄。2005。植物萃取液對植物病原真菌之抑制效果。植物病理學會刊14:59-66。 謝奉家。2005。植物病害的殺手明星-枯草桿菌。科學發展月刊 391:18-21。 鍾文全。1993。台灣十字花科蔬菜黑斑病菌的生物特性研究。國立中興大學植物病理學系碩士論文。133 pp。 Ajayi, A. O., and Fagade, O. E. 2007. Heat activation and stability of amylases from Bacillus species. Afr. J. Microbiol. Res. 6: 1181-1184. Alexopoulos, C. J., Mims, C. W., and Blackwell, M. 1996. Introductory Mycology, 4th ed. John Wiley and Sons, New York, 868 pp. Arguelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., Joris, B., and Fickers, P. 2009. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb. Cell Fact. 8:63. Asaka, O., and Shoda, M. 1996. Biocontrol of Rhizoctomia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62:4081-4085. Assie, LK., Deleu, M., Arnaud, L., Paquot, M., Thonart, P., Gaspar, Ch., and Haubruge, E. 2002. Insecticide activity of surfactins and iturins from a biopesticide Bacillus subtilis Cohn (S499 strain). Meded. Rijksuniv. Gent Fak. Landbouwkd. Toegep. Biol. Wet. 67:647-655. Bais, H. P., Fall, R., and Vivanco, J. M. 2004. Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol.134:307-319. Baker, K. F. 1987. Evolving concepts of biological control of plant pathogens. Annu. Rev. Phytopathol. 25:67-85. Bargabus, R. L., Zidack, N. K., Sherwood, J. E., and Jacobsen, B. J. 2003. Oxidative burst elicited by Bacillus mycoides isolate Bac J, a biological control agent, occurs independently of hypersensitive cell death in sugar beet. Mol. Plant-Microb. Interact. 16:1145-1153. Beever, R. E., and Bollard, E. G. 1970. The nature of the stimulation of fungal growth by potato extract. J. Gen. Microbiol. 60:273-279. Besson, F., and Michel, G. 1988. Bacillomycins Fb and Fc: isolation and characterization. J. Antibiot. (Tokyo) 41:282-288. Besson, F., Peypoux, F., Michel, G, and Delcambe, L. 1978. Identification of antibiotics of iturin group in various strains of Bacillus subtilis. J. Antibiot. (Tokyo) 31:284-288. Besson, F., Peypoux, F., Michel, G., and Delcambe, L. 1976. Characterization of iturin A in antibiotics from various strains of Bacillus subtilis. J. Antibiot. (Tokyo) 29:1043-1049. Bieman, K. 1992. Mass spectrometry of peptides and proteins. Annu. Rev. Biocem. 61:977-1010. Carrillo, C., Teruel, J. A., Aranda, F. J., and Ortiz, A. 2003. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim. Biophys. Acta.1611:91-97. Chaurasia, B., Pandey, A., Palni, L. M., Trivedi, P., Kumar, B., and Colvin, N. 2005. Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol. Res. 160:75-81. Chen, L. Y., and Price, T. V. 2002. Dark leaf spot (Alternaria brassicicola) on chinese cabbage: temporal spread and its influencing factors. Plant Pathol. 52:536-545. Chitarra, G. S., Breeuwer, P., Nout, M. J., Van-Aelst, A.C., Rombouts, F. M., and Abee, T. 2003. An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J. Appl. Microbiol. 94:159-166. Cho, Y., Srivastava, A., Ohm, R. A., Lawrence, C. B., Wang, K. H., Grigoriev, I. V., and Marahatta, S. P. 2012. Transcription factor Amr1 induces melanin biosynthesis and suppresses virulence in Alternaria brassicicola. PLoS Pathog. 8:e1002974. Contreras-Cornejo, H. A., Macias-Rodriguez, L., Cortes-Penagos, C., and Lopez-Bucio, J. 2009. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 149:1579-1592. Das, P., Mukherjee, S., and Sen, R. 2008. Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J. Appl. Microbiol. 104:1675-1684. Dehghan-Noudeh, G., Housaindokht, M., and Bazzaz, B. S. F. 2005. Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633. J. Microbiol. 43: 272-276. De-Lucca, A. J., and Walsh, T. J. 1999. Antifungal peptides: novel therapeutic compounds against emerging pathogens. Antimicrob. Agents Chemother. 43: 1-11. Fan, C. Y., and Koller, W. 1998. Diversity of cutinases from plant pathogenic fungi: Differential and sequential expression of cutinolytic esterases by Alternaria brassicicola. FEMS Microbiol. Lett. 158:33-38. Fiddaman, P. J., and Rossall, S. 1993. The production of antifungal volatiles by Bacillus subtilis. J. Appl. Bacteriol. 74:119-126. Grossman, A. D., and Losick, R. 1988. Extracellular control of spore formation in Bacillus subtilis. Pro. Natl. Acad. Sci. USA 85:4369-4373. Haas, D., and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3:307-319. Han, Y., Huang, X. , Cao, M., and Wang, Y. 2008. Micellization of surfactin and its effect on the aggregate conformation of amyloid beta(1-40). J. Phys. Chem. 112:15195-15201 Handelsman, J., Raffel, S., Mester, E. H., Wunderlich, L., and Grau, C. R. 1990. Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Appl. Environ. Microbiol. 56:713–718. Hiradate, S., Yoshida, S., Sugie, H, Yada, H, and Fujii, Y. 2002. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochem. 61:693-698. Ho, W. C., Wu, T. Y., Su, H. J., and Ko, W. H. 2007. Effect of oriental medicinal plant extracts on spore germination of Alternaria brassicicola and nature of inhibitory substances from speedweed. Plant Dis. 91:1621-1624. Hofemeister, J., Conrad, B., Adler, B., Hofemeister, B., Feesche, J., Kucheryava, N., and Vater, J. 2004. Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol. Gen. Genomics 272:363-378. Hsieh, F. C., Lin, T. C., Meng, M., and Kao, S. S. 2008. Comparing methods for identifying Bacillus strains capable of producing the antifungal lipopeptide Iturin A. Curr. Microbiol. 56:1-5. Huang, J. W., and Sun, S. K. 1998. Compendium of Plant Diseases. vol. 2:Vegetable Crop Diseases. Shih Way Publishes, Taichung, Taiwan. 160 pp. Humpherson-Jones, F.M. 1989. Survival of Alternaria brassicae and Alternaria brassicicola on crop debris of oil-seed rape and cabbage. Ann. appl. Biol. 115: 45-50. Idris, E. E. S., Bochow, H., Ross, H., and Borriss, R. 2004. Use of Bacillus subtilis as biocontrol agent. VI. Phytohormone like action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. J. Plant Dis. Prot. 111:583-597. Intana, W., Suwanno, T., and Chamswarng, C. 2005. Use of antifungal metabolite from Trichoderma virens for controlling Chinese kale leaf spots caused by Alternaria brassicicola. Walailak J. Sci. and Tech. 2:1-9. Jourdan, E., Henry, G., Duby, F., Dommes, J., Barthelemy, J. P., Thonart, P., and Ongena, M. 2009. Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol. Plant-Microbe. Interact. 22:456-468. Kado, C. I., and Heskett, M. G. 1970. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology 60:969-976. Katz, E., and Demain, A. L. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41:449-474. Kawamura, C., Tsujimoto, T., and Tsuge, T. 1999. Targeted disruption of a melanin biosynthesis gene affects conidial development and uvtolerance in the japanese pear pathotype of Alternaria alternata. Mol. Plant-Microbe. Interact. 12:59-63. Kilian, M., Steiner, U., Krebs, B., Junge, H., and Schmiedeknecht, R. H. 2000. FZB24 Bacillus subtilis-mode of action of microbial agent in enhancing plant vitality. Pflanzenschutz-Nachr. 1:72-93. Kortemaa, H., Rita, H., Haahtela, K., and Smolander, A. 1994. Root-colonization ability of antagonistic Streptomyces griseoviridis. Plant and Soil 163:77-83. Kracht, M., Rokos, H, Ozel, M., Kowall, M, Pauli, G., and Vater, J. 1999. Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J. Antibiot. (Tokyo) 52:613-619. La Ragionea, R. M., Casulab, G., Cuttingb, S. M., and Woodward, M. J. 2001. Bacillus subtilis spores competitively exclude Escherichia coli O78:K80 in poultry. Vet. Microbiol. 79:133-142. Latoud, C., Peypoux, F., and Michel, G. 1990. Action of iturin a, an antifungal antibiotic from Bacillus subtilis, on the yeast Saccharomyces cerevisiae: Modification of membrane permeability and lipid composition. Can. J. Microbiol. 11:1588-1595. Leclere, V., Bechet, M., Adam, A., Guez, J. S., Wathelet, B., Ongena, M.,and Jacques, P. 2005. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism''s antagonistic and biocontrol activities. Appl. Environ. Microbiol. 71:4577-4584. Leejeerajumnean, A., Ames, J. M., and Owens, J. D. 2000. Effect of ammonia on the growth of Bacillus species and some other bacteria. Lett. Appl. Microbiol. 30:385-389. Leifert, C., Li, H., Chidburee, S., Hampson, S., Workman, S., Sigee, D., and Harbour, A. 1995. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J. Appl. Microbiol. 78:97-108. Loshon, C.A., Melly, E., Setlow, B., and Setlow, P. 2001. Analysis of the killing of spores of Bacillus subtilis by a new disinfectant, Sterilox. J. Appl. Microbiol. 91:1051-1058. Maget-Dana, R., and Peypoux, F. 1994. Iturins, a special class of pore-forming lipopeptides: Biological and physicochemical properties. Toxicology 87:151-174. Maget-Dana, R., Thimon, L., Peypoux, F., and Ptak, M. 1996. Surfactin/iturin a interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie. 74:1047-1051. Malfanova, N., Franzil, L., Lugtenberg, B., Chebotar, V., and Ongena, M. 2012. Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch. Microbiol. 194:893-899. Malina, A., and Shai, Y. 2005. Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide. Biochem. J. 390:695-702. Markham, J. E., and Hille, J. 2001. Host-selective toxins as agents of cell death in plant–fungus interactions. Mol. Plant Pathol. 2:229-239. Maude, R.B., and Humpherson-Jones, F.M. 1980. Studies on the seed-borne phases of dark leaf spot (Alternaria brassicicola) and grey leaf spot (Alternaria brassicae) of brassicas. Ann. Appl. Biol. 95:331-319. Moshafi, M. H., Forootanfar, H., Ameri, A., Shakibaie, M., Dehghan-Noudeh, G., and Mojdeh Razavi, M. 2011. Antimicrobial activity of Bacillus sp. Strain fas1 isolated from soil. Pak. J. Pharm. Sci. 24:269-275. Moszer, I., Jones, L. M., Moreira, S., Fabry, C., and Danchin, A. 2002. SubtiList: the reference database for the Bacillus subtilis genome. Nucleic Acids Res. 30: 62-65. Moyne, A. L. , Shelby, R. , Cleveland, T. E. , and Tuzun, S. 2001. Bacillomycin D:an iturin with antifungal activity against Aspergillus flavus. J. Appl. Microbiol. 90: 622-629. Muto, M., Takahashi, H., Ishihara, K., and Yuasa, H. 2003. Control of black leaf spot (Alternaria brassicicola) of crucifers by extracts of black nightshade (solanum nigrum). Plant Pathology Bulletin 14:25-34. Nicholson, W.L., Munakata, N., Horneck, G., Melosh, H., and Setlow, P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64:548-572. Ohno, A., Ano, T., and Shoda, M. 1995. Effect of temperature on production of lipopeptide antibiotics, iturin A and surfactin by a dual producer, Bacillus subtilis RB14, in solid-state fermentation. J. Ferment. Bioeng. 80:517-519. Ohno, A., Ano, T., and Shoda, M. 1996. Use of soybean curd residue, okara, for the solid state substrate in the production of a lipopeptide antibiotic, iturin A, by Bacillus subtilis NB22. Proc. Biochem. 31: 801-806. Ongena, M., and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115-125. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9:1084-1090. Otani, H., Kohnobe, A., Kodama, M., and Kohmoto, K. 1998. Production of a host-specific toxin by germinating spores of Alternaria brassicicola. Physiol. Mol. Plant Pathol. 52:285-295. Peypoux, F., Besson, F., Michel, G., and Delcambe, L. 1981. Structure of bacilomycin D, a new antibiotic of the iturin group. Eur. J. Biochem. 118:323-327. Peypoux, F., Bonmatin, J. M., and Wallach, J. 1999. Recent trends in biochemistry of surfactin. Appl. Microbiol. Biotechnol. 51:553-563. Peypoux, F., Marion, D., Maget-Dana, R., Ptak, M., Das, B.C. , and Michel, G.1985. Structure of bacillomycin F, a new peptidolipid antibiotic of the iturin group. Eur. J. Biochem. 153:335-340. Peypoux, F., Pommier, M. T., Das, B. C., Besson, F., Delcambe, L., and Michel, G. . 1984. Structures of bacillomycin D and bacillomycin L peptidolipid antibiotics from Bacillus subtilis. J. Antibiot. (Tokyo) 37:1600-1604. Philippe, B., Pascal, C, Lionel, B., and Bertrand, D. 1999. Occurrence of a lipase in spores of Alternaria brassicicola with a crucial role in the infection of cauli£ower leaves. FEMS Microbiol. Lett. 180:183-189. Reis, A., and Boiteux, L. S. 2010. Alternaria species infecting brassicaceae in the brazilian neotropics: Geographical distribution, host range and specificity. Plant Pathol. 92:661-668. Priest, F. G. 1993. Systematics and Ecology of Bacillus. Pages3-16. In:Bacillus Subtilis and other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. A. L. Sonenshine, J. A., Koch, and R. Losick (eds). American Society for Microbiology. Washington. Razafindralambo, H., Popineau, Y., Deleu, M., Hbid, C., Jacques, P., Thonart, P., and Paquot, M. 1998. Foaming properties of lipopeptides produced by Bacillus subtilis: effect of lipid and peptide structural attributes. J. Agric. Food Chem. 46:911-916. Reyes-RamRez, A., Escudero-Abarca, B. I. , Aguilar-Uscanga, G. , Hayward-Jones, P. M. , and Barboza-Corona, J. E. 2004. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J. Food Sci.69:131-134. Roepstroff, p., and Folman, J. 1984. Proposal for a common nomenclature for squence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11:601-604. Romero, D., Arrebola, E., De-Vicente, A., Cazorla, F. M., Rakotoaly, R. H., Kuipers, O. P., and Perez-Garcia, A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant-Microbe. Interact. 20: 430-440. Romero, D., de Vicente, A., Zeriouh, H., Cazorla, F. M., Fernandez-Ortuno, D., Tores, J. A., and Perez-Garcia, A. 2007. Evaluation of biological control agents for managing cucurbit powdery mildew on greenhouse-grown melon. Plant Pathol. 56:976-986. Ryu, C. M., Murphy, J. F., Mysore, K. S., and Kloepper, J. W. 2004. Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant J. 39:381-392. Schallmey, M., Singh, A., and Ward, O. P. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50:1-17. Setlow, P. 2001. Resistance of spores of Bacillus species to ultraviolet light. Environ. Mol. Mutagen. 38:97-104. Setlow, P. 2006. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 101:514-525. Shai, Y., Makovitzky, A., and Avrahami, D. 2006. Host defense peptides and lipopeptides: modes of action and potential candidates for the treatment of bacterial and fungal infections. Curr. Protein Pept. Sci. 7:479-486. Sharma, A. K., Gupta, J. S., and Maheshwari, J. K. 1984. The relationship of Streptomyces arabicus to Alternaria brassicae (Berk.) Sacc. and Alternaria brassicicola (Schew.) Wiltshire on the leaf surface of yellow sarson and taramira. Geobios New Rep. 3:83-84. Sharma, A. K., Gupta, J. S., and Singh, S. P. 1985. Effect of temperature on the antifungal activity of Streptomyces arabicus against Alternaria brassicae (Berk) Sacc. and A. brassicicola (Schew.) Wiltshire. Geobios New Rep. 12: 168-169. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56:845-857. Tabbene, O., Kalai, L., Ben Slimene, I., Karkouch, I., Elkahoui, S., Gharbi, A.,and Limam, F. 2011. Anti-candida effect of bacillomycin D-like lipopeptides from Bacillus subtilis B38. FEMS Microbiol. Lett. 316:108-114. Todar, K. 2003. The genus Bacillus. Todar’s Online Textbook of Bacteriology. University of Wisconsin-Madison. Department of Bacteriology. Online Resources. Toure, Y., Ongena, M., Jacques, P., Guiro, A., and Thonart, P. 2004. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol. 96:1151-1160. Vanittanakom, N, Loeffler, W, Koch, U., and Jung, G. 1986. Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot. (Tokyo) 39:888-901. Wang, J., Liu, J., Chen, H., and Yao, J. 2007. Characterization of Fusarium graminearum inhibitory lipopeptide from Bacillus subtilis IB. Appl. Microbiol. Biotechnol. 76:889-894. Winkelmann, G., Allgaier, H., Lupp, R., and Jung, G. 1983. Iturin AL--a new long chain iturin a possessing an unusual high content of C16-beta-amino acids. J. Antibiot. (Tokyo) 11:1451-1457. Xu, Z., Shao, J., Li, B., Yan, X., Shen, Q., and Zhang, R. 2013. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl. Environ. Microbiol. 79:808-815. Yao, C, and Koller, W. 1995. Diversity of cutinases from plant pathogenic fungi: Different cutinases are expressed during saprophytic and pathogenic stages of Alternaria brassicicola. Mol. Plant-Microbe. Interact. 8:122-130. Yeh, M. S., Wei, Y. H., and Chang, J. S. 2005. Enhanced production of surfactin from Bacillus subtilis by addition of solid carriers. Biotechnol. Prog. 21:1329-1334. Yokota, K., Yatsuda, M., Miwa, E.,and Higuchi, K. 2012. Comparative study on sample preparation methods for the HPLC quantification of iturin from culture supernatant of an antagonistic Bacillus strain. J. ISSAAS 18:70-75. Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K., and Shirata , A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91:181-187. Yu, G. Y., Sinclair, J. B., Hartman, G. L., and Beragnolli, B. L. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34:955-963. Zhang, S.M. 2012. Isolation and characterization of antifungal lipopeptides produced by endophytic Bacillus amyloliquefaciens TF28. Afr. J. Microbiol. Res. 6:1747-1755. Zou, A., Liu, J., Garamus, V. M., Zheng, K., Willumeit, R., and Mu, B. 2010. Interaction between the natural lipopeptide [Glu1, Asp5] surfactin-C15 and hemoglobin in aqueous solution. Biomacromolecules 11:539-599.  
摘要: 十字花科黑斑病,是由Alternaria brassicicola (Schw.) Wiltshire所引起,於世界各地之十字花科蔬菜作物普遍發生,其病原菌可影響寄主植物生長的所有階段,包括種子繁殖,雖有推薦化學藥劑供防治應用,然而藥劑殘留對人體與環境之淺潛在危險性,使開發替代性的微生物製劑為當務之急。本研究旨在探討本土拮抗性枯草桿菌TKS1-1對黑斑病防治之抗生物質鑑定及其可能作用機制。本研究由包括TKS1-1、SP4-17、WG6-14及WP8-12等4株研究室既有抗生活性與生長產孢性狀俱為優異之BSG菌株,經由對峙培養篩選,證實對十字花科黑斑病菌均具有良好的拮抗活性,且以枯草桿菌TKS1-1培養於PSB中5天之培養濾液對黑斑病菌具最佳拮抗能力。在離葉接種系統中,接種病原菌後一天施用TKS1-1培養濾液不具抑制感染能力;相反的,於接種病原菌同時與前一天施用TKS1-1培養濾液則可防治病原菌侵入感染。且TKS1-1培養濾液所含拮抗物質對溫度及pH具高度穩定性,於pH值2 - 13及100 ℃處理20分鐘仍具拮抗活性。其濾液於生物體外,主要影響包括發芽延遲與發芽管產生不正常膨大畸形結構,於生物體內,接種於甘藍葉片上均可發揮同樣效果,值得注意的是此發芽管畸形結構,使得類附著器結構無法形成;且其濾液影響菌絲細胞膜的通透性,對細胞膜造成傷害,使細胞膜內電解質流失產生離子滲漏,於處理4小時後顯著增加2.1倍,至28小時電解質滲漏達到高峰。為鑑定抗真菌物質之特性,試驗中以正丁醇、乙酸乙酯、Sep-pakR C18及酸沉降等萃取方式萃取,其中以正丁醇萃取具最佳拮抗能力,其萃取液經薄層色層分析板顯示於Rf 值0.06、0.15、0.36可偵測到具抗真菌活性,利用呈色反應證實所產生之抗真菌物質可能具有胺基酸及脂質等特性。另經Sep-pakR C18管柱吸附,以70 %甲醇溶液之沖洗液,進一步以高效液相層析儀分析其滯留時間於3.43及3.98分鐘之物質,其UV吸收光譜近似於iturin A混合標準品。進一步將高效液相層析儀分離之抗生物質,以三段四極桿串聯式質譜儀,分析其母離子Q1與子離子Q3片段,顯示於3.43分鐘的母離子Q1分子量為1043 m/z,其具b-type子離子片斷為212 m/z (b2)、299 m/z (b3)、524 m/z (b4)、638 m/z (b5)、801 m/z (b6)、915 m/z (b7) 等特徵離子片斷,故證實為iturin A2 (C14);而3.98分鐘的母離子Q1分子量為1057 m/z,其具b-type子離子片斷為212 m/z (b2)、299 m/z (b3)、538 m/z (b4)、652 m/z (b5)、815 m/z (b6)、929 m/z (b7) 等特徵離子片斷,故證實為iturin A3,4,5 (C15)。且於過去研究中,已知iturins類抗生物質脂肪酸碳鏈愈長可增加其抗菌活性,亦有相同結果。本研究結果顯示枯草桿菌TKS1-1所產生的iturin A是抑制A. brassicicola之重要因子,且可應用於十字花科黑斑病之生物防治具優異之開發潛力。
The black leaf spot disease caused by Alternaria brassicicola has been one of the most troubled diseases on crucifers which occurred worldwide. The pathogen was known to affect the host plants on all growth stages including seeds for propagation. The main solution to reduce the pathogen infection has been mainly chemical fungicides that are noxious to the environment and consumers as well. Development of bio-fungicides as an alternative has been attempted because the great concern on the chemical residue on the freshly consumed vegetables. The main of my objectives were to identify and characterize an antifungal compound produced by Taiwan native antagonistic Bacillus subtilis TKS1-1 for the control of the black spot disease on Crucifers, and the mode of action. In this investigation, 4 BSG strains shown with superior antagonistic activity against A. brassicicola in a preliminary dual culture assay namely TKS1-1, SP4-17, WG6-14 and WP8-12 were screened for effectiveness as the microbial agent for controlling black spot disease on crucifers. The Bacillus subtilis TKS1-1 culture in PSB for 5 days culture filtrate was among the test strains the best for antagonistic activity. The application of TKS 1-1 culture filtrate at different periods of spraying on controlling disease of detached cabbage leaf infection A. brassicicola, the pathogen was conducted one day after inoculation with the culture filtrate has loss control to infection, otherwise at the same time and one day before inoculation with the culture filtrate did not cause any symptoms on the cabbage leaf surface. The culture filtrate was very stable to heat and insensitive to pH. They still retained strong antifungal activity after treatment at pH values ranging from 2 to 13 for 24 hrs or at 100 ℃ for 20 min. The culture filtrate inhibitory effect was manifested by the delayed spore germination, the significantly deterred and extensively malformed germ tube development by in vitro system, as well as in vivo system. It’s worth noting that the germ tube malformation was apparently associated with the incapability of appressorium-like structure formation. The culture filtrate effect on A. brassicicola mycelia quickly loses their regulatory control on the membrane permeability indicating instant damage on the membrane cause to electrolyte leakage was increased 2.1 folds at 4 hours post treatment and reached maximum increase of 3.1 folds at 28 hours post treatment. To identify and characterize an antifungal compound produced byTKS1-1, extraction of the antibiotics was attempted by different (n-butanol, ethyl acetate, Sep-pakR C18, acid precipitation) extraction methods. The n-butanol extraction method was the most effective method, by thin layer chromatography (TLC) showed the antifungal activity were detected at Rf values of 0.06, 0.15, 0.36, and the color reaction indicated their amino acid and lipid containing characteristics. Another extraction method was purified by Sep-pak C18R cartridge clarification with the use of 70% methanol as eluent. Further purification of the antibiotic by reverse phase high performance liquid chromatography (HPLC) separation of retention times were 3.43 min and 3.98 min with nearly iturin A standard identical UV absorption spectrum. The molecular characterization of the HPLC purified antibiotics by electrospray ionization quadruple (Q-trap) tandem mass spectrometry analysis by whole span scanning revealed the detection of 3.43 min the major ions at 1043 m/z, and b-type ions b2 (212 m/z), b3 (299 m/z), b4 (524 m/z), b5 (638 m/z), b6 (801 m/z), b7 (915 m/z), and proven to be iturin A2 (C14); 3.98 min the major ions at 1057 m/z, and b-type ions b2 (212 m/z), b3 (299 m/z), b4 (538 m/z), b5 (652 m/z), b6 (815 m/z), b7 (929 m/z), and proven to be iturin A3,4,5 (C15). In the pest reports, the fatty acid length of iturins is known to be important for their antifungal activity which increases with increasing number of carbon atom, in my experiments with the same results. The above results indicate that antibiotic iturin A produced by TKS1-1 played an important role in antagonism against A. brassicicola. Therefore, B. subtilis TKS1-1 could be a useful organism for development of a bio-fungicide agent for bio-control of leaf spot on crucifers. 
其他識別: U0005-2908201315311600
Appears in Collections:植物病理學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.