Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31972
標題: 無病原性尖鐮胞菌防治胡瓜萎凋病之研究
The study of nonpathogenic Fusarium oxysporum on controlling Fusarium wilt of cucumber
作者: 王照仁
Wang, Chao-Jen
關鍵字: 生物防治菌
biological control agent
無病原性尖鐮胞菌
專一性引子對
胡瓜萎凋病
分子檢測
交互情形
田間試驗
nonpathogenic Fusarium oxysporum
specific primer
Fusarium wilt of cucumber
molecular detection
interaction
field experiments
出版社: 植物病理學系所
引用: 第一章 Abeysinghe, S. 2009. Use of nonpathogenic Fusarium oxysporum and rhizobacteria for suppression of Fusarium root and stem rot of Cucumis sativus caused by Fusarium oxysporum f. sp. radicis-cucumerinum. Archives of Phytopathology and Plant Protection 42: 73-82. Agrios, G. N. 2005. Plant Pathology (fifth edition), Page 134. Academic Press, California, USA. 952 pp. Alabouvette, C. 1999. Fusarium wilt suppressive soils: an example of disease suppressive soils. Australasian Plant Pathology 28: 57-64. Alabouvette, C., and Couteaudier, Y. 1992. Biological control of fusarium wilts with nonpathogenic Fusaria. Pages 415-426 in: Tjamos, E. C., Cook, R. J., and Papavizas, G. C. (eds) Biological control of plant diseases: Progress and Challenges for the Future. Plenum Press, New York, USA. 462 pp. Alabouvette, C. Couteaudier, Y., and Lemanceau, P. 1986. Nature of intrageneric competition between pathogenic and non-pathogenic Fusarium in a wilt-suppressive soil. Pages 165-178 in: Swinburne, T. R. (ed) Iron, siderophores and plant disease. Plenum Press, New York, USA. 351 pp. Alabouvette, C., Edel, E., Lemanceau, P., Olivain, C., Recorbet, G., and Steinberg, C. 2001. Diversity and interactions among strains of Fusarium oxysporum: Application to biological control. Pages 131-158 in: Jeger, M. J., and Spence, N. J. (eds) Biotic interactions in plant–pathogen associations. CAB International Press, Wallingford, UK. 353pp. Alabouvette, C., Lemanceau, P., and Steinberg, C. 1996. Biological control of Fusarium wilts: opportunities for developing a commercial product. Pages 192-212 in: Hall, R. (ed) Principles and Practice of Managing Soilborne Plant Pathogens. American Phytopathological Society Press, MN. 330 pp. Alabouvette, C., Olivain, C., L''haridon, F., Aim’E, S. E., and Steinberg, C. 2007. Using strains of Fusarium oxysporum to control Fusarium wilts: dream or reality. Pages 157-177 in: Vurro, M., and Gressel, J. (eds) Novel Biotechnologies for Biocontrol Agents Enhancement and Management. Springer Press, Netherlands, 363 pp. Alabouvette, C., Olivain, C., Migheli, Q., and Steinberg, C. 2009. Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytologist 184: 529-544. Alabouvette, C., Rouxel, F., and Louvet, J. 1979. Characteristics of Fusarium wiltsuppressive soils and prospects for their utilization in biological control. Pages 165-182 in: Schippers, B., and Gams, W.(eds) Soil-Borne Plant Pathogens. Academic Press, New York. 686 pp. Appel, D. J., and Gordon, T. R. 1996. Relationships among pathogenic and nonpathogenic isolates of Fusarium oxysporum based on the partial sequence of the intergenic spacer region of the ribosomal DNA. Molecular Plant-Microbe Interactions 9: 125-138. Baayen, R. P., O’Donnell, K., Bonants, P. J. M., Cigelnilk, E., Kroon, L. P. N. M., Roebroeck, E. J. A., and Waalwijk, C. 2000.Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and rot disease. Phytopathology 90: 891-900. Baker, K. F., and Cook, R. J. 1974. Biological Control of Plant Pathogens. Freeman Press, San Francisco. 433 pp. Bao, J. R., and Lazarovits, G. 2001. Differential colonization of tomato roots by nonpathogenic and pathogenic Fusarium oxysporum strains may influence Fusarium wilt control. Phytopathology 91: 449-456. Benhamou, N., and Garand, C. 2001. Cytological analysis of defense-related mechanisms induced in pea root tissues in response to colonization by nonpathogenic Fusarium oxysporum Fo47. Phytopathology 91: 730-740. Blok, W. J., and Bollen, G. J. 1996. Interactions of asparagus root tissue with soil microorganisms as a factor in early decline of asparagus. Plant Patholology 45: 809-822 Burgess, L. W. 1981. General ecology of the Fusarium. Pages 225-235 in: Nelson, P. E., Toussoun, T. A. and Cook, R. J. (eds) Fusarium: Disease, Biology, and Taxonomy, Pennsylvania State University Press, PA. 457 pp. Chen, J. F. 1999. Identification of Fusarium wilt of cucumber and screening of nonpathogenic Fusarium oxysporum for the disease control. Taichung, Taiwan: National Chung Hsing University, Master’s thesis. (in Chinese with English abstract) Chen, J. F., and Lin, Y. S. 1999. The biocontrol of Fusarium wilt of cucumber. Plant Pathology Bulletin 8: 171. (abstract in Chinese) Dissanayake, M. L. M. C., Kashima, R., Tanaka, S., and Ito, S. 2009. Pathogenic variation and molecular characterization of Fusarium species isolated from wilted Welsh onion in Japan. Journal of General Plant Pathology 75: 37-45. Duijff, B. J., Pouhair, D., Olivain, C., Alabouvette, C., and Lemanceau, P. 1998. Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by non-pathogenic Fusarium oxysporum Fo47. European Journal of Plant Pathology 104: 903-910. Edel-Hermann, V., Brenot, S., Gautheron, N., Aime, S., Alabouvette, C., and Steinberg, C. 2009. Ecological fitness of the biocontrol agent Fusarium oxysporum Fo47 in soil and its impact on the soil microbial communities. FEMS Microbiology Ecology 68: 37-45. Fourie, G., Steenkamp, E. T., Gordon, T. R., and Viljoen, A. 2009. Evolutionary relationships among the Fusarium oxysporum f. sp. cubense vegetative compatibility groups. Applied and Environmental Microbiology 75: 4770-4781. Fourie, G., Steenkamp, E., Ploetz, R., Gordon, T., and Viljoen, A. 2011. Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex. Infection, Genetics and Evolution 11: 533-542. Fravel, D., Olivain, C., and Alabouvette, C., 2003. Fusarium oxysporum and its biocontrol. New Phytologist 157: 493-502. Fuchs, J. G., Moenne-Loccoz, Y., and Defago, G. 1997. Nonpathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato. Plant Disease 81: 492-496. Gizi, D., Stringlis, I. A., Tjamos, S. E., and Paplomatas, E. J. 2011. Seedling vaccination by stem injecting a conidial suspension of F2, a non-pathogenic Fusarium oxysporum strain, suppresses Verticillium wilt of eggplant. Biological Control 58: 387-392. Gordon, T. R., and Martyn, R. D. 1997. The evolutionary biology of Fusarium oxysporum. Annual Review of Phytopathology 35: 111-128. Hervas, A., Landa, B., Datnoff, L. E., and Jimenez-Diaz, R. M. 1998. Effects of commercial and indigenous microorganisms on Fusarium wilt development in chickpea. Biological Control 13: 166-176. Honda, M., and Kawakub,Y. 1998. Control of Fusarium basal rot of rakkyo [Allium chinense] by non-pathogenic Fusarium moniliforme andFusarium oxysporum. Soil Microorganisms 51: 13-18. Huang, K. S., and Lin, Y. S. 1995. The identification and disease control of seedling damping-off and sunscald of balsam pear-loofah grafts. Plant Pathology Bulletin 4: 213. (abstract in Chinese) Huang, M. J. and Lin, Y. S. 2006. Identification of the Fusarium wilt pathogen on cucumber in Taiwan. Plant Pathology Bulletin 14: 282. (abstract in Chinese) Jaroszuk-Scisel, J., Kurek, E., Winiarczyk, K., Baturo, A., and Lukanowski, A. 2008. Colonization of root tissues and protection against Fusarium wilt of rye (Secale cereale) by nonpathogenic rhizosphere strains of Fusarium culmorum. Biological Control 45: 297-307. Katsube, K., and Alasaka, Y. 1997. Control of Fusarium wilt of spinach by transplanting seedlings pretreated with non-pathogenic Fusarium oxysporum. Annals of the Phytopathological Society of Japan 63: 389-394. Katan, J. 2000. Physical and cultural methods for the management of soil-borne pathogens. Crop Protection 19: 725-731. Katan, T. 1999. Current status of vegetative compatibility groups in Fusarium oxysporum. Phytoparasitica 27: 51-64. Kaur, R., Kaur, J., Singh, R. S., and Alabouvette, C. 2007. Biological control of Fusarium oxysporum f. sp. ciceri by non-pathogenic Fusariumand fluorescent Pseudomonas. International Journal of Botany 3: 114-117. Kaur, R., Kaur, J., and Singh, R. S. 2010. Nonpathogenic Fusarium as a Biological Control Agent. Plant Pathology Journal 9: 79-91. Kijima, T. 1992. Biological control of soil-borne disease with antagonistic bacteria. Proceedinds of Kanto-Tosan Plant Protection Society 39: 1-5. Kloepper, J., Leong, J., Teintze, M., and Schroth, M. 1980. Pseudomonas siderophores: A mechanism explaining disease-suppressive soils. Current Microbiology 4: 317-320. Lazarovits, G., Tenuta, M., and Conn, K. L. 2001. Organic amendments as a disease control strategy for soilborne diseases of high-value agricultural crops. Australasian Plant Pathology 30: 111-117. Larkin, R. P., Hopkin, D. L., and Martin, F. N. 1996. Suppression of Fusarium wilt of watermelon by nonpathogenic Fusarium oxysporum and other microorganisms recovered from a disease-suppressive soil. Phytopathology 86: 812-819. Larkin, R. P., Hopkins, D. L., and Martin, F. N. 1993. Effect of successive watermelon plantings on Fusarium oxysporum and other microorganisms in soils suppressive and conducive to fusarium wilt of watermelon. Phytopathology 83: 1097-1105. Larkin, R. P., and Fravel, D. R. 1999. Mechanisms of Action and Dose-Response Relationships Governing Biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp. Phytopathology 89: 1152-1161. Lemanceau, P., and Alabouvette, C. 1991. Biological control of Fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop Protection 10: 279-286. Lemanceau, P., Bakker, P. A. H. M., De Kogel, W. J., Alabouvette, C., and Schippers, B. 1992. Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of Fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Applied and Environmental Microbiology 58: 2978-2982. Lemanceau, P., Bakker, P. A. H. M., De Kogel, W. J., Alabouvette, C., and Schippers, B. 1993. Antagonistic effect on nonpathogenic Fusarium oxysporum strain Fo47 and pseudobactin 358 upon pathogenic Fusarium oxysporum f. sp. dianthi. Applied and Environmental Microbiology 59: 74-82. Lievens, B., Rep, M., and Thomma, B. P. H. J. 2008. Recent developments in the molecular discrimination of formae speciales of Fusarium oxysporum. Pest Management Science 64: 781-788. Lin, Y. H., Chang, J. Y., Liu, E. T., Chao, C. P., Huang, J. W., and Chang, P. F. L. 2009. Development of molecular marker for specific detection of Fusarium oxysporum f. sp. cubense race 4. European Journal of Plant Pathology 123: 353-365. Lin, Y. S., and Huang, K. S. 1995. The identification of grafting incompatibility of balsam pear-loofah grafts and its control. Plant Pathology Bulletin 4: 213. (abstract in Chinese) Magie, R. O. 1980. Fusarium disease of gladioli controlled by inoculation of corms with non-pathogenic Fusaria. Proceeding of the Florida State Horticultural Society 93: 172-175. Mandeel, Q., and Baker, R. 1991. Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum. Phytopathology 81: 462-469. Mao, A. J., Zhang, F., Zhang, L. R., and Wang, Y. J. 2008. Analysis on the inheritance of resistance to Fusarium wilt race 4 and cucumber scab and their linkage in cucumber WIS2757. Scientia Agricultura Sinica 41: 3382-3388. Mbofung, G. Y., Hong, S. G., and Pryor, B. M. 2007. Phylogeny of Fusarium oxysporum f. sp. lactucae inferred from mitochondrial small subunit, elongation factor 1-α, and nuclear ribosomal intergenic spacer sequence data. Phytopathology 97: 87-98. Minuto, A., Minuto, G., Migheli, Q., Mocioni, M., and Gullino, M. L. 1997. Effect of antagonistic Fusarium spp. and of different commercial biofungicide formulations on Fusarium wilt of basil (Ocimum basilicum L.). Crop Protection 16: 765-769. Nel, B., Steinberg, C., Labuschangne, N., and Viljoen, A. 2006. The potential of nonpathogenic Fusarium oxysporum and other biological control organisms for suppressing Fusarium wilt of banana. Plant Pathology 55: 217-223. Notz, R., Maurhofer, M., Dubach, H., Haas, D., and Defago, G. 2002. Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-Diacetyphloroglucinol biosynthetic gene expression in Pseodomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Apply and Environmental Microbiology 68: 2229-2235. O’Donnell, K. Kistler, H. C., Cigelnik, E., and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences 95: 2044-2049. O’Donnell, K., Gueidan, C., Sink, S., Johnston, P. R., Crous, P. W., Glenn, A., Riley, R., Zitomer, N. C., Colyer, P., Waalwijk, C., Lee, T. V. D., Moretti, A., Kang, S., Kim, H-S., David, M., Geiser, D. M., Juba, J. H., Baayen, R. P., Cromey, M. G., Bithell, S., Sutton, D. A., Skovgaard, K., Ploetzm, R., Kistler, H. C., Elliott, M., Davis, M., and Sarver, B. A. J. 2009. A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex. Fungal Genetics and Biology 46: 936-948. Olivain, C., and Alabouvette, C. 1997. Colonization of tomato root by a nonpathogenic strain of Fusarium oxysporum. New Phytologist 137: 481-494. Olivain, C., Humbert, C., Nahalkova, J., Fatehi, J., L’Haridon, F., and Alabouvette, C. 2006. Colonization of Tomato Root by Pathogenic and Nonpathogenic Fusarium oxysporum Strains Inoculated Together and Separately into the Soil. Applied and Environmental Microbiology 72: 1523-1531. Ogawa, K., and Komada, H. 1985. Biological control of Fusarium wilt of sweet potato with cross-protection by prior inoculation with nonpathogenic Fusarium oxysporum. Japan Agricultural Research Quarterly 19: 20-25. Ogawa, K., and Komada, H. 1986. Induction of systemic resistance against Fusarium wilt of sweet potato by non-pathogenic Fusarium oxysporum. Annals of the Phytopathological Society of Japan 52: 15-21. Owen, J. H. 1955. Fusarium wilt of cucumber. Phytopathology 45: 435-439. Owen, J. H. 1956. Cucumber wilt, caused by Fusarium oxysporum f. cucumerinum n. f. Phytopathology 46: 153-157. Park, J., Park, B., Veeraraghavan, N., Jung, K., Lee, Y. H., Blair, J. E., Geiser, D. M., Isard, S., Mansfield, M. A., Nikolaeva, E., Park, S. Y., Russo, J., Kim, S. H., Greene, M., Ivors, K. L., Balci, Y., Peiman, M., Erwin, D. C., Coffey, M. D., Rossman, A., Farr, D., Cline, E., Grunwald, N. J., Luster, D. G., Schrandt, J., Martin, F., Ribeiro, O. K., Makalowska, I., and Kang, S. 2008. Phytophthora database: a forensic database supporting the identification and monitoring of Phytophthora. Plant disease 92: 966-972. Park, C. S., Paulitz, T. C., and Baker, R. 1988. Biocontrol of Fusarium wilt of cucumber resulting from interactions between pseudomonas putida and nonpathogenic isolates of Fusarium oxysporum. Phytopathology 78: 190-194. Paulitz, T. C., Park, C. S., and Baker, R. 1987. Biological control of Fusarium wilt of cucumber with nonpathogenic isolates of Fusarium oxysporum. Canaidan journal of Microbiology 33: 349-353. Poczai, P., and Hyvonen, J. 2010. Nuclear ribosomal spacer regions in plant phylogenetic: problems and prospects. Molecular Biology Reports 37:1897-1912. Postma, J., and Rattink, H. 1992. Biological control of Fusarium wilt of carnation with a nonpathogenic strain isolate of Fusarium oxysporum. Canadian Journal of Botany 70: 1199-1205. Postma, J., and Luttikholt, J. G. 1996. Colonization of carnation stems by a nonpathogenic isolate of Fusarium oxysporum and its effect on Fusarium oxysporum f.sp. dianthi. Canadian Journal of Botany 74: 1841-1851. Punja, Z. K., and Parker, M. 2000. Development of Fusarium root and stem rot, a new disease on greenhouse cucumber in British Columbia, caused by Fusarium oxysporum f. sp. radicis-cucumerinum. Canadian Journal of Plant Pathology 22: 349-363. Recorbet, G., Steinberg, C., Olivain, C., Edel, V., Trouvelot, S., Dumas-Gaudot, E., Gianinazzi, S., and Alabouvette, C. 2003. Wanted: pathogenesis-related marker molecules for Fusarium oxysporum. New Phytologist 159: 73-92. Reddy, J. M., Raoof, M. A., and Ulaganathan, K. 2012. Development of specific markers for identification of Indian isolates of Fusarium oxysporum f. sp. ricini. European Journal of Plant Pathology 134: 713-719. Scarlette, K., Tesoriero, L., Daniel, R., and Guest, D. 2013. Detection and quantification of Fusarium oxysporum f. sp. cucumerinum in environmental samples using a specific quantitative PCR assay. European Journal of Plant Pathology DOI 10.1007/s10658-013-0244-1. Scher, F. M., and Baker, R. 1980. Mechanism of biological control in a Fusarium suppressive soil. Phytopathology 70: 412-417. Schneider, R. W. 1984. Effects of nonpathogenic strains of Fusarium oxysporum on celery root infection by F. oxysporum f.sp. apii and a novel use of the Lineweaver-Burk double reciprocal plot technique. Phytopathology 74: 646-653. Shen, C. S. 2001. Control of Fusarium wilt of cucumber by using nonpathogenic Fusarium oxysporum from a suppressive soil. Taichung, Taiwan: National Chung Hsing University, Master’s thsis. (in Chinese with English abstract) Shen, C. S., and Lin, Y. S. 2001. Control of Fusarium wilt of cucumber by using nonpathogenic Fusarium oxysporum from a suppressive soil. Plant Pathology Bulletin 10: 205. (abstract in Chinese) Shi, J., Mueller, W., and Beckman, C. H. 1991. Ultrastructural responses of vessel contact cells in cotton plants resistant or susceptible to infection by Fusarium oxysporum f. sp. vasinfectum. Physiological and Molecular Plant Pathology 38: 211-222. Shue, G. H., and Lin, Y. S. 1997. The identification and possible control of Fusarium wilt of vegetable sponge. Plant Pathology Bulletin 6: 199. (abstract in Chinese) Skovgaard, K., Nirenberg, H. I., O’Donnell, K., and Rosendahl, S. 2001. Evolution of Fusarium oxysporum f. sp. vasinfectum races inferred from multigene genealogies. Phytopathology 91: 1231-1237. Smith, S. N., and Snyder, W. C. 1971. Relationship of inoculum density and soil types to severity of Fusarium wilt of sweet potato. Phytopathology 61: 1049-1051. Smith, S. N. 2007. An overview of ecological and habitat aspects in the genus Fusarium with special emphasis on the soil-borne pathogenic forms. Plant Pathology Bulletin 16: 97-120. Staub, J. E., and Bacher, J. 1997. Cucumber as a processed vegetable. Pages 129-193 in: Smith, D. S., Cash, J. N., Nip, W., and Hui, Y. H. (eds) Processing Vegetables: Science and Technology IV. PA: Technomic Publishing Co., Inc. Lancaster. Staub, J. E., Robbins, M. D., and Wehner, T. C. 2008. Cucumber. Pages 241-282 in: Prohens, J., and Nuez, F. (eds) Vegetables [electronic resource] . I, Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae. Springer Science+Business Media, New York. 426 pp. Suga, H., Hirayama, Y., Morishima, M., Suzuki, T., Kageyama, K., and Hyakumachi, M. 2013. Development of PCR primers to identify Fusarium oxysporum f. sp. fragariae. Plant Disease 97: 619-625. Taylor, J. W., and Fisher, M. C. 2003. Fungal multilocus sequence typing ce typing typing d able.ects. Current Opinion in Microbiology 6: 351-356. Tamietti, G., and Alabouvette, C.1986. Resista,nce de sols aux maladies: XIII -Role des Fusarium oxysporum non pathogenes dans les mecanismes de resistance dun sol de noirmoutier aux fuseieses vasculaires. Agronomie 6: 541-548. Tamietti, G., and Valentino, D. 2006. Soil solarization as an ecological method for the control of Fusarium wilt of melon in Italy. Crop Protection 25: 389-397. Tezuka, N., and Makino, T. 1991. Biological control of Fusarium wilt of strawberry by nonpathogenic Fusarium oxysporum isolated from strawberry. Annals of the Phytopathological Society of Japan 57: 506-511. Toyota, K., Kitamura, M., and Kimura, M. 1995. Suppression of Fusarium oxysporum f.sp. raphani PEG-4 in soil following colonization by other Fusarium spp. Soil Biology and Biochemistry 27: 41-46. Vakalounakis, D. J. 1995. Inheritance and linkage of resistance in cucumber line SMR-18 to race 1 and race 2 Fusarium oxysporum f. sp. cucumerinum. Plant Pathology 44: 169-172. Vakalounakis, D. J. 1996. Root and stem rot of cucumber caused by Fusarium oxysporum f. sp. redicis-cucumerinum f. sp. nov. Plant Disease 80: 313-316. Vakalounakis, D. J., and Fragkiadakis, G. A. 1999. Genetic diversity of Fusarium oxysporum isolates from cucumber: Differentiation by pathogenicity, vegetative compatibility, and RAPD fingerprinting. Phytopathology 89: 161-169. Wang, C. J., Chung, W. H., and Lin, Y. S. 2011. Methods for introduction of nonpathogenic Fusarium oxysporum into cucumber plants for better control of Fusarium wilt disease in Taiwan. Phytopathology 101: S37. Wang, C. J. 2006. Study of nonpathogenic Fusarium oxysporum in controlling Fusarium wilt of cucumber and asparagus bean. Taichung, Taiwan: National Chung Hsing University, Master’s thesis. Wehner, T. C., and Horton, R. R. J. 1986. Performance of cultivars of four different cucumber types for fresh-market use in North Carolina. Cucurbit Genetics Cooperative Report 9: 53-54. Yildiz, M., and Delen, N. 1977. Studies on the occurrence of Fusarium wilt of cucumber Ege region of Turkey. Journal of Turkish Phytopathology 6: 111-117. Yuen, G. Y., Smith, M. N., and McCain, A. H. 1985. Reduction of Fusarium wilt of carnation with suppressive soils and antagonistic bacteria. Plant Disease 69: 1071-1075. 第二章 Alabouvette, C., Lemanceau, P., and Steinberg, C. 1996. Biological control of Fusarium wilts: opportunities for developing a commercial product. Pages 192-212 in: Hall, R. (ed) Principles and Practice of Managing Soilborne Plant Pathogens. American Phytopathological Society Press, MN. 330 pp. Alabouvette, C., Olivain, C., Migheli, Q., and Steinberg, C. 2009. Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytologist 184: 529-544. Appel, D. J., and Gordon, T. R. 1996. Relationships among pathogenic and nonpathogenic isolates of Fusarium oxysporum based on the partial sequence of the intergenic spacer region of the ribosomal DNA. Molecular Plant-Microbe Interactions 9: 125-138. Baayen, R. P., O’Donnell, K., Bonants, P. J. M., Cigelnik, E., Keoon, L. P. N. M., Roebroeck, E. J. A., and Waalwijk, C. 2000. Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and root disease. Phytopathology 90: 891-900. Blok, W. J., Zwankhuizen, M. J., and Bollen, G. J. 1997. Biological control of Fusarium oxysporum f. sp. asparagi by applying non-pathogenic isolates of F. oxysporum. Biocontrol Science and Technology 7: 527-542. Chen, Y. J., Lin, Y. S., and Chung, W. H. 2012. Bacterial wilt of sweet potato caused by Ralstonia solanacearum in Taiwan. Journal of General Plant Pathology 78: 80-84. Di Pietro, A., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J., and Roncero, M. I. G. 2003. Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology. 4: 315-325. Dissanayake, M. L. M. C., Kashima, R., Tanaka, S., and Ito, S. 2009. Pathogenic variation and molecular characterization of Fusarium species isolated from wilted Welsh onion in Japan. Journal of General Plant Pathology 75: 37-45. Edel-Hermann, V., Sebastien, A. S., Cordier, C., Olivain, C., Steinberg, C., and Alabouvette, C. 2011. Development of a strain-specific real-time PCR assay for the detection and quantification of the biological control agent Fo47 in root tissues. FEMS Microbiology Letters 322: 34-40. Fourie, G., Steenkamp, E. T., Gordon, T. R., and Viljoen, A. 2009. Evolutionary relationships among the Fusarium oxysporum f. sp. cubense vegetative compatibility groups. Applied and Environmental Microbiology 75: 4770-4781. Fravel, D., Olivain, C., and Alabouvette, C. 2003. Research review: Fusarium oxysporum and its biocontrol. New Phytologist 157: 493-502. Fuchs, J. G., Moenne-Loccoz, Y., and Defago, G. 1997. Nonpathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato. Plant Disease 81: 492-496. Gordon, T. R., and Martyn, R. D. 1997. The evolutionary biology of Fusarium oxysporum. Annual Review of Phytopathology 35: 111-128. Gordon, T. R., and Okamoto, D. 1990. Colonization of crop residue by Fusarium oxysporum f. sp. melonis and other species of Fusarium. Phytopathology 80: 381-386. Gordon, T.R., and Okamoto, D. 1992. Population structure and the relationship between pathogenic and nonpathogenic strains of Fusarium oxysporum. Phytopathology 82: 73-77. Gordon, T. R., Okamoto, D., and Milfroom, M. G. 1992. The structure and interrelationship of fungal populations in native and cultivated soils. Molecular Ecology Notes 1: 241-249. Guetsky, R., Shtienberg, D., Elad, Y., Fischer, E., and Dinoor, A .2002. Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Phytopathology 92: 976-985. Haas, D., and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology 3: 307-319. Howell, C. R. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant disease 87: 4-10. Jurado, M., Vazquez, C., Marin, S., Sanchis, V., and Gonzalez-Jaena, M. T. 2006. PCR-based 15 strategy to detect contamination with mycotoxigenic Fusarium species in maize. Systematic and Applied Microbiology 29: 681-689. Kaur, R., Kaur, J., and Singh, R. S. 2010. Nonpathogenic Fusarium as a Biological control Agent. Plant Pathology Journal 9: 79-91. Katan, T. 1999. Current status of vegetability groups in Fusarium oxysporum. Phytoparasitica 27: 51-64. Larkin, R. P., and Fravel, D. R. 1999. Mechanisms of action and dose-response relationships govering biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp. Phytopathology 89: 1152-1161. Lemanceau, P., Bakker, P. A., De Kogel, W. J., Alabouvette, C., and Schippers, B. 1992. Effect of pseudibactin 358 production by Pseudomonas putida WCS358 on suppression of Fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Applied and Environmental Microbiology 58: 2978-2982. Liao, C. W. 1977. The study of Fusarium wilt of sweet potato. Taichung, Taiwan: National Chung Hsing University, Bachelor’s thesis. Lievens, B., Rep, M., and Thomma, B. P. H. J. 2008. Recent developments in the molecular discrimination of formae speciales of Fusarium oxysporum. Pest Management Science 64: 781-788. Lin, Y. H., Chang, J. Y., Liu, E. T., Chao, C. P., Huang, J. W., and Chang, P. F. L. 2009. Development of molecular marker for specific detection of Fusarium oxysporum f. sp. cubense race 4. European Journal of Plant Pathology 123: 353-365. Ma, L. J., van der Does, H. C., Borkovich, K. A., Coleman, J. J., Daboussi, M. J., Di Pietro, A., Dufresne, M., Freitag, M., Grabherr, M., Henrissat, B., Houterman, P. M., Kang, S., Shim, W. B., Woloshuk, C., Xie, X., Xu, J. R., Antoniw, J., Baker, S. E., Bluhm, B. H., Breakspear, A., Brown, D. W., Butchko, R. A., Chapman, S., Coulson, R., Coutinho, P. M., Danchin, E. G., Diener, A., Gale, L. R., Gardiner, D. M., Goff, S., Hammond-Kosack, K. E., Hilburn, K., Hua-Van, A., Jonkers, W., Kazan, K., Kodira, C. D., Koehrsen, M., Kumar, L., Lee, Y. H., Li, L., Manners, J. M., Miranda-Saavedra, D., Mukherjee, M., Park, G., Park, J., Park, S. Y., Proctor, R. H., Regev, A., Ruiz-Roldan, M. C., Sain, D., Sakthikumar, S., Sykes, S., Schwartz, D. C., Turgeon, B. G., Wapinski, I., Yoder, O., Young, S., Zeng, Q., Zhou, S., Galagan, J., Cuomo, C. A., Kistler, H. C., and Rep, M. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464: 367-373. Nash, S. M., and Snyder, W, C, 1962, Quantitative estimation by plate counts of propagules of the bean root rot Fusarium in field soils. Phytopathology 52: 567-572. Nel, B., Steinberg, C., Labuschangne, N., and Viljoen, A. 2006. The potential of nonpathogenic Fusarium oxysporum and other biological control organisms for asuppressing Fusarium wilt of banana. Plant Pathology 55: 217-223. Olivain, C., and Alabouvette, C. 1997. Colonization of tomato root by a nonpathogenic strain of Fusarium oxysporum. New Phytologist 137: 481-494. O’Donnell, K., Gueidan, C., Sink, S., Johnston, P. R., Crous, P. W., Glenn, A., Riley, R., Zitomer, N. C., Colyer, P., Waalwijk, C., Lee, T. V. D., Moretti, A., Kang, S., Kim, H. S., David, M., Geiser, D. M., Juba, J. H., Baayen, R. P., Cromey, M. G., Bithell, S., Sutton, D. A., Skovgaard, K., Ploetzm, R., Kistler, H. C., Elliott, M., Davis, M., and Sarver, B. A. J. 2009. A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex. Fungal Genetics and Biology 46: 936-948. O’Dinnell, K., Sutton, D. A., Rinaldi, M. G., Magnon, K. C., Cox, P. A., Revankar, S. G., Sanche, S., Geiser, D. M., Juba J. H., van Burik, J. A., Padhye, A., Anaissie, E. J., Francesconi, A., Walsh, T. J., and Robinson, J. S. 2004. Genetic diversity of human pathogenic members of the Fusarium oxysporum complex inferred from multilocus DNA sequence data and amplified fragment kengh polymorphism analyses: evidence for the recent dispersion of a geographically widespread clonal lineage and nosocomial origin. Journal of Clinical Microbiology 42: 5109-5120. O’Donnell, K., Kistler, H. C., Cigelnik, E., and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America 95: 2044-2049. Park, C. S., Paulitz, T. C., and Baker, R. 1988. Biocontrol of Fusarium wilt of cucumber resulting from interactions between pseudomonas putida and nonpathogenic isolates of Fusarium oxysporum. Phytopathology 78: 190-194. Park, J., Park, B., Veeraraghavan, N., Jung, K., Lee, Y. H., Blair, J. E., Geiser, D. M., Isard, S., Mansfield, M. A., Nikolaeva, E., Park, S. Y., Russo, J., Kim, S. H., Greene, M., Ivors, K. L., Balci, Y., Peiman, M., Erwin, D. C., Coffey, M. D., Rossman, A., Farr, D., Cline, E., Grunwald, N. J., Luster, D. G., Schrandt, J., Martin, F., Ribeiro, O. K., Makalowska, I., and Kang, S. 2008. Phytophthora Database: A forensic database supporting the identification and monitoring of Phytophthora. Plant Disease 92: 966-972. Poczai, P., and Hyvonen, J. 2010. Nuclear ribosomal spacer regions in plant phylogenetic: problems and prospects. Molecular Biology Reports 37: 1897-1912. Recorbet, G., Steinberg, C., Olivain, C., Edel, V., Trouvelot, S., Dumas-Gaudot, E., Gianinazzi, S., and Alabouvette, C. 2003. Wanted: pathogenesis-related marker molecules for Fusarium oxysporum. New Phytologist 159: 73-92. Reddy, J. M., Raoof, M. A., and Ulaganathan, K. 2012. Development of specific markers for identification of Indian isolates of Fusarium oxysporum f. sp. ricini. European Journal of Plant Pathology 134: 713-719. Rep, M., Van Der Does, H. C., Meijer, M., Van Wijk, R., Houterman, P. M., Dekker, H. L., De Koster, C. G., and Cornelissen, B. J. 2004. A small, cysteine‐rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I‐3‐mediated resistance in tomato. Molecular microbiology, 53: 1373-1383. Scarlette, K., Tesoriero, L., Daniel, R., and Guest, D. 2013. Detection and quantification of Fusarium oxysporum f. sp. cucumerinum in environmental samples using a specific quantitative PCR assay. European Journal of Plant Pathology DOI 10.1007/s10658-013-0244-1. Schilling, A. G., Moller, E. M., and Geiger, H. H. 1996. Polymerase chain reaction-based assays for species-specific detection of Fusarium culmorum, F. graminearum, and F. avenaceum. Phytopathology 86: 515-523. Skovgaard, K., Nirenberg, H. I., O’Donnell, K., and Rosendahl, S. 2001. Evolution of Fusarium oxysporum f. sp. vasinfectum races inferred from multigene genealogies. Phytopathology 91: 1231-1237. Sneh, B., Dupler, M., Elad, Y., and Baker, R. 1984. Chlamydospore germination of Fusarium oxysporum f. sp. cucumerinum as affected by fluorescent and lytic bacteria from a Fusarium-suppressive soil. Phytopathology 74:1115-1124. Suga, H., Hirayama, Y., Morishima, M., Suzuki, T., Kageyama, K., and Hyakumachi, M. 2013. Development of PCR primers to identify Fusarium oxysporum f. sp. fragariae. Plant Disease 97: 619-625. Taylor, J. W., and Fisher, M. C. 2003. Fungal multilocus sequence typing – it’s not just for bacteria. Current Opinion in Microbiology 6: 351-356. Tjamos, S. E., Markakis, E. A., Antoniou, P., and Paplomatas, E. J. 2006. First record of Fusa
摘要: 無病原性尖鐮胞菌(nonpathogenic Fusarium oxysporum, NPFo)被認為具防治作物萎凋病的能力,然在形態學上與病原菌類似,僅能透過病原性測定的方式判別,因此在篩選具生物防治能力的菌株時需耗費時間。為建立快速有效篩選與區分出NPFo之平台,本研究透過已發表FIGS11/FIGS12引子對,增幅並找出NPFo菌株與其他作物萎凋病菌之核糖核酸內非轉錄基因間格區(intergenic spacer region, IGS)的序列差異,成功設計出NPIGS-R專一性引子,並配合FIGS11引子,可將NPFo菌株與其他15個分化型作物萎凋病菌共122個菌株區分。另測試14株疑似NPFo菌株時,顯示僅有4株菌株會被此專一性引子對偵測到,且該4株菌株於溫室條件下,被證實皆具有延緩胡瓜萎凋病病勢發展的能力。進一步利用FIGS11/NPIGS-R引子對測試蒐集自田間的77株尖鐮胞菌,結果顯示僅有6株菌株出現專一DNA條帶。後續溫室試驗亦證實該6株菌株對胡瓜不具病原性,且具有延緩胡瓜萎凋病病勢發展之能力。這些具防治能力的NPFo菌株,透過IGS與EF-1α序列,分析該類菌株與植物或人體伺機性病原菌之親緣性,結果顯示具生物防治能力的NPFo菌株可自成一分子群,並可與植物病原菌和人體病原菌區分。進一步,本研究利用螢光染色和分子檢測等方法,分析NPFo菌株以不同方法接種於胡瓜植體內的分佈情形,藉此了解接種方法對NPFo菌株於植體內分佈之影響。得知NPFo菌株Fo276以粉衣、育苗澆菌或浸根法導入植株後,僅可分佈於根和芽栓(peg)的表皮與皮層組織中,無法進入到導管組織內。若以剪胚軸法導入Fo276,則發現該菌株可分佈於下胚軸、子葉節與莖部組織中,於導管組織內亦可觀察到Fo276的存在。另以分子檢測法分析Fo276與胡瓜萎凋病菌Foc0812菌株,以浸根法或剪胚軸法同時接種植株後的交互情形,得知以浸根法接種兩菌後,Fo276菌株會被侷限於根與芽栓處的組織中,而Foc0812菌株會在胡瓜組織中繼續擴展,至第四週時Foc0812菌株已可從根部至莖部組織測得到;若以剪胚軸法同時接種兩菌四週後,則可觀察到Fo276菌株分佈於下胚軸、子葉節與莖部組織中,然Foc0812菌株僅可於下胚軸1-3公分處被偵測到。無病原性尖鐮胞菌(nonpathogenic Fusarium oxysporum, NPFo)Fo276、Fo95022、Fo95024及Fo95026菌株已被證實,於溫室條件下具有延緩胡瓜萎凋病病勢發展之能力,且NPFo配合剪胚軸法導入植株後可表現更佳的防治效果。本研究利用育苗澆菌法與配合發根素之剪胚軸法將NPFo菌株導入植株內,於田間條件下評估防治胡瓜萎凋病之效果。2010年於高雄路竹區進行田間防治觀察試驗,結果顯示以育苗澆菌法導入NPFo菌株Fo276與Fo95026的胡瓜植株,定植於田間九週後發病度分別達65.1與70.3%,與對照組62.3%發病度相近;而Fo95024菌株之發病度為43.1%。翌年於南投魚池鄉試驗田中,以剪胚軸法導入NPFo菌株至胡瓜內,定植於田間八週後顯示,處理Fo276菌株的植株發病度為42.9%,與對照組56.1%發病度無差異;而接種Fo95022、Fo95024、Fo95026及混合菌株的發病度則介於33.3-38.0%,明顯低於對照組之發病度。
Previous investigations demonstrated that nonpathogenic Fusarium oxysporum (NPFo) isolates, which have biological control potential for managing Fusarium wilt of crops, has not been possible to separate from pathogens through morphological characteristics. Although these two populations can be distinguished from one another using a bioassay, the work is laborious and time-consuming. In order to establish an effective method for screening and differentiating the NPFo isolates from pathogens, a fragment of the intergenic spacer (IGS) region of ribosomal DNA from an NPFo isolate, with biological control ability, was PCR-amplified with published general primers, FIGS11/FIGS12 and sequenced for comparing the nucleotides polymorphism with the Fusarium wilt pathogens. A new primer, NPIGS-R, which was designed based on the IGS sequence, was paired with the FIGS11 primer. These primers were then evaluated for their specificity to amplify DNA of NPFo isolate from other 122 Fusarium wilt isolates of fourteen different formae speciales. In addition, the modified primer pair showed positive amplification from four of the fourteen tested Fo isolates, and these four Fo isolates showed the ability in delaying symptom development of cucumber Fusarium wilt in greenhouse bioassay tests. Seventy-seven Fo isolates were obtained from the soil and plant tissues and then subjected to amplification using the modified primer pair; six samples showed positive amplification. These six isolates did not cause symptoms on cucumber seedlings when grown in peat moss infested with the isolates and delayed disease development when the same plants were subsequently inoculated with a virulent isolate of Fusarium wilt pathogen on cucumber. Moreover, the isolates of nonpathogenic Fo with biological control ability were monophylogeny and could been differentiated from other reference isolates of human and plant pathogens by phylogenic analysis based on the sequences of IGS and EF-1α. Previous study indicated that the colonization and distribution of NPFo isolates could be affected by different inoculation methods. In order to clarify the correlation between the colonization ability and the inoculation methods of NPFo in cucumber, two kinds of analysis methods, such as fluorescent staining and molecular detection, were used to observe the distribution and colonization of the NPFo isolate in plant tissues. Results of the distribution study indicated that the NPFo isolate Fo276 was restricted in root and peg tissues and mainly colonized in epidermis or cortex cell by seed coating, substrate irrigation and root soaking whereas Fo276 could colonize in hypocotyl tissues, stem tissues and vascular tissues by hypocotyl cutting inoculation method. Furthermore, the interaction between pathogenic isolate of Foc0812 and NPFo isolate of Fo276 in plant tissues were also evaluated and analyzed by molecular detection method in this study. The results indicated that the Fo276 still be restricted in root and peg tissues whereas the Foc0812 could reach and colonize in hypocotyl, cotyledonary node and stem tissues at 4 weeks after co-inoculated by root soaking method. However, the Fo276 could been observed in hypocotyl, cotyledonary node and stem tissues whereas the Foc0812 was been restricted in the 1-3 cm of hypocotyl tissues at 4 weeks after co-inoculation with hypocotyl cutting method. Previous study indicated that nonpathogenic Fusarium oxysporum (NPFo) isolates Fo276, Fo95022, Fo95024 and Fo95026 showed the ability in delaying the disease development on Fusarium wilt of cucumber in greenhouse bioassay tests. Moreover, the satisfactory biological control efficacy of NPFo was achieved when the isolate was introduced into plant by hypocotyl cutting inoculation method. The biocontrol efficacy of NPFo isolates in controlling Fusarium wilt of cucumber had been evaluated in field conditions by substrate irrigation and hypocotyl cutting inoculation methods. The preliminary test was achieved at Luzhu in 2010, the isolates Fo276, Fo95024 and Fo95026 were introduced into cucumber plants by substrate irrigation inoculation method, and the result indicated that the disease severity rating of NPFo isolates of Fo276 and Fo95026 provided after 9 weeks were 65.1 and 70.3%, respectively whereas the control treatment was 62.3%. However, the disease severity of the Fo95024 treatment was only 43.1%. In the next year, the NPFo isolates were introduced into cucumber plants by hypocotyl cutting inoculation method and then transplanted in field for evaluating the biocontrol efficacy of Fusarium wilt of cucumber at Yuchi. Disease severity was suppressed by the NPFo isolates Fo95022, Fo95024, Fo95026 and combination (33.3-38.0%) throughout 8 weeks period following the transplantation of seedlings into field. But isolate Fo276 did not suppressed the disease severity of 42.9%, as compared with 56.1% rating for the control.
URI: http://hdl.handle.net/11455/31972
其他識別: U0005-1208201316153400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1208201316153400
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.