Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31996
標題: 調製栽培介質防治甘藍黃葉病
Formulation of Cultural Media for Control of Cabbage Yellows
作者: 莊茗凱
Chuang, Min-Kai
關鍵字: 香菇太空包堆肥
Spent mushroom compost
抑病栽培介質
枯草桿菌
蝦蟹殼粉
牛血粉
甘藍
甘藍黃葉病
disease suppressive cultural medium
Bacillus
Shrimp and crab shell powder
Blood meal
Cabbage
Cabbage yellows
出版社: 植物病理學系所
引用: 1. 王珮瑾、黃振文。1999。香菇太空包堆肥抑制胡瓜猝倒病菌的特性。中興大學植物病理研究所碩士論文。62 pp。 2. 行政院農委會。2011。99年農業統計年報。行政院農委會出版。73 pp。 3. 邱安隆、黃振文。1996。利用農工廢棄物研製可供培育蔬菜種苗之抑病介質。國立中興大學植物病理研究所碩士論文。74 pp。 4. 郁宗雄。2001。蔬菜栽培。郁維強、郁維珍刊印。186 pp。 5. 孫守恭。1975。Fusarium屬病原菌在土壤中之生態。植保會刊 17:216-232。 6. 孫文章、謝桑煙。1998。甘藍穴盤育苗技術。台南區農業改良場技術專刊76: 87-4。 7. 黃振文。1976。西瓜蔓割病菌生態之研究。國立中興大學植物病理學系學士論文。 8. 黃振文。1991。利用土壤添加物防治作物之土壤傳播性病害。植保會刊 33:113-123。 9. 黃涵、洪立。1988。台灣蔬菜彩色圖說。行政院農委會、國立台灣大學園藝系編印。210 pp。 10. 鄭榮瑞。1998。蔬菜栽培自動化與機械化。台南區農業改良場技術專刊83: 1-2。 11. Arden, F. S, and Alan, A. M. 1986. Vegetable Diseases and Their Control. A Wiley –Interscience Publication. pp. 264-266. 12. Bosland, P. W., and Williams, P. H. 1986. An evaluation of Fusarium oxysporum from crucifers based on pathogenecity, isozyme polymorphism, vegetative compatibility, and geographic origin. Can. J. Bot. 65: 2067-2073. 13. Bruce, A., Srinivasan, U., Staines, H. J., and Highley, T. L. 1995. Chitinase and lamarinase production in liquid culture of Trichoderma spp. and their role in biocontrol of wood decay fungi. Int. Biodeterior. Biodegrad. 35: 337–353. 14. Borrero, C., Trillas, M. I., Ordovas, J., Tello, J. C., and Aviles, M. 2004. Predictive factors for the suppression of Fusariumwilt of tomato in plant growth media. Phytopathology 94: 1094-1101. 15. Borrero, C., Infantes, M. J., Gonzalez, E., Tello, J. C., and Aviles, M. 2005. Relation between suppressiveness to tomato Fusarium wilt and microbial populations in different growth media. Acta Hortic. 697: 425-430. 16. Borrero, C., Ordovas, J., Trillas, M. I., and Aviles, M. 2006. Tomato Fusarium wilt suppressiveness. The relationship between the organic plant growth media and their microbial communities as characterised by BiologR. Soil Biol. Biochem. 38: 1631–1637. 17. Borrero, C., Isabel, T., and Manuel, A., 2009. Carnation Fusarium wilt suppression in four composts. Eur. J. Plant Pathol. 123: 425-433. 18. Christie, R., Atkins, N. E., and Munch-Peterson, E. 1944. A note on a lytic phenomenon shown by group B. streptococci. Aust. J. Exp. Biol. Med. Sci. 22: 197-200. 19. Cebolla, V., and Pera, J. 1983. Suppressive effects of certain soils and substrates against Fusarium wilt of carnation. Acta Hortic.150: 113-119. 20. Chung, Y. R, Hoitink, H. A. H., and Lipps, P. F. 1988. Interactions between organic-matter decomposition level and soilborne disease severity. Agri. Ecosys. Environ. 24: 183–193. 21. Chung, Y. R., and Hoitink, H. A. J. 1990. Interactions between thermophilic fungi and Trichoderma hamatum in suppression of Rhizoctonia damping-off in a bark compost-amended container medium. Phytopathology 80: 73-77. 22. Craft, C. M., and Nelson, E. B. 1996. Microbial properties of composts that suppress damping-off and root rot of creeping bentgrass caused by Pythium graminicola. Appl. Environ. Microbiol. 62: 1550-1557. 23. Cotxarrera, L., Trillas-Gay, M. I., Steinberg, C., and Alabouvette, C. 2002. Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol. Biochem. 34: 467-476. 24. Chae, D. H., De Jin, R., Hwangbo, H., Kim, Y. W., Kim, Y. C., Park, R. D., Krishnan, H. B., and Kim, K. Y. 2006. Control of late blight (Phytophthora capsici) in pepper plant with a compost containing multitude of chitinase-producing bacteria. Biocontrol 51: 339-351. 25. De la Cruz, J., Rey, M., Lora, J. M., Hidalgo-Gallego, A., Domınguez, F., Pintor-Toro, J. A., Llobell, A., and Benitez, T. 1993. Carbon source control on β-glucanases, chitobiase and chitinase from Trichoderma harzianum. Arch. Microbiol. 159: 316–322. 26. Erhart, E., Burian, K., Hartl, W., and Stich, K. 1999. Suppression of Pythium ultimum by biowaste composts in relation to compost microbial biomass, activity and content of phenolic compounds. J. Phytopathol. 147: 299–305. 27. Garibaldi, A. 1988. Research on substrates suppressive to Fusarium oxysporum and Rhizoctonia solani. Acta Hortic. 221: 271-277. 28. Gupta, R., Saxena, R. K., Chaturvedi, P., and Virdi, J. S. 1995. Chitinase production by Streptomyces viridificans: its potential in fungal cell wall lysis. J Appl. Bacteriol. 78: 378–383. 29. Hampson, M. C., and Coombes, J. W. 1995. Reduction of potato wart disease by crushed crabshell : suppression or eradication ? Can. J. Plant Pathol. 17: 69-74. 30. Huang, Y., Wild, B. L., and Morris, S.C. 1992. Postharvest biological control of Penicillium digitatum decay on citrus fruit by Bacillus pumilus. Ann. Appl. Biol. 130: 367-372. 31. Huang, H. C, and Huang, J.W. 1993. Prospects for control of soilborne plant pathogens by soil amendment. Curr. Topics Bot. Res. 1: 223-235. 32. Huang, J. W. and Huang, H. C. 2000. A formulated container medium suppressive to Rhizoctonia damping- off of cabbage. Bot. Bull. Acad. Sin. 41: 49-56. 33. Hoitink, H. A. L, Stone, A. G., and Grebus, M. E. 1996. Suppression of plant diseases by composts. pp. 373-381 In: The Science of Composting de Bertoldi, M (ed). Blackie Academic and Professional, Glasgow. 34. Hoitink, H. A. J., and Boehm, M. J. 1999. Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu. Rev. Phytopathol. 37: 427-446. 35. Ippolito, A., Schena, L., Pentimoene, I., and Nigro, F. 2005. Control of postharvest rots of sweet cherries by pre- and post-harvest applications of Aureobasidium pullulans in combination with calcium chloride or sodium bicarbonate. Postharvest Biol. Tech. 36: 245-252. 36. Jiang, Y. M., Zhu, X. R., and Li, Y. B. 2001. Postharvest control of litchi fruit rot by Bacillus subtilis. Lebensmittel-Wissenschaft und Technologie/Food Science and Technology 34: 430-436. 37. Loffler, H. J. Coher, E. B., Oobekkin, G. T., and Schippers, B. 1986. Nitrite as a factor in the decline of Fusarium oxysporum f. sp. dianthi in soil supplemented with urea or ammonium. Neth. J. Plant Pathol. 92: 153-162. 38. Lorito, M., Di Pietro, A., Hayes, C. K., Woo, S. L., and Harman, G. E. 1993. Antifungal, synergistic interaction between chitinolytic enzymes from Trichoderma harzianum and Enterobacter cloaceae. Mol. Plant Pathol. 83: 721-728. 39. Lee, Y. H., Huang, J. W., and Leu, L. S. 1997. Mechanisms for control of Rhizoctonia seedling blight of Euonymus japonicus in culture media with blood meal amendment. Plant Prot. Bull. 39: 341-354. 40. Leelasuphakul, W., Sivanunsakul, P., and Phongpaichit, S. 2006. Purification, characterization and synergistic activity of b-1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight pathogens. Enzyme and Microbial Technology 38: 990-997. 41. Morrissey, R. F, Dugan, E. P., and Koths, J. S. 1976. Chitinase production by an Arthrobacter sp. lysing cells of Fusarium roseum. Soil Biol. Biochem. 8:23–28. 42. Mihuta-Grimm, L., and Rowe, R. C. 1986. Trichoderma spp. as biocontrol agents of Rhizoctonia damping-off of radish in organic soil and comparison of four delivery systems. Phytopathology 76: 306-312. 43. McKellar, M. E., and Nelson, E. B. 2003. Compost-induced suppression of Pythium damping-off is mediated by fatty-acid metabolizing seed-colonizing microbial communities. Appl. Environ. Microbiol. 69: 452-460. 44. Nash, S. N., and Snyder, W. C. 1962. Quantitative estimation by plate counts of propagules of the bean root rot Fusarium in field soils. Phytopathology 52: 567-572. 45. Nobutaka, S., Kenichi, T., Takanobu, Y., Masako, T. N., and Hiroyuki, S. 2007. Combined application of Psudomonas fluorescens strain LRB3W1 with a low benomyl for control of cabbage yellows caused by Fusarium oxysporum f. sp. conglutinans. Biocontrol Sci. Technol. 17(1): 21-31. 46. Orlikowski, L. B. 1983. Influence of substratum type and fungicidal treatment on the development of Fusarium wilt of carnation. Acta Hortic. 150: 127-139. 47. Okane, I., Srikitikulchai, P., Toyama, K., Lassoe, T., Sivichai, S., Hywel- Jones, N., Nakargiri, A., Potacharoen, W., and Suzuki, K. 2008. Study of endophytic Xylariaceae in Thailand: diversity and taxonomy inferred from rDNA sequence analyses with saprobes forming fruit bodies in the field. Mycoscience 49: 359-372. 48. Pera, J., and Calvet, C. 1989. Suppression of Fusarium wilt of carnation in a composted pine bark and composted olive pumice. Plant Dis. 73: 699–700. 49. Park, J. Y., Okada, G., Takahashi, M., and Oyaizu, H. 2002. Screening of fungal antagonists against yellows of cabbage caused by Fusarium oxysporum f. sp. conglutinans. Mycoscience 43: 447-451. 50. Pinchuk, I.V., Bressollier, P., Sorokulova, I.B., Verneuil, B., and Urdaci, M.C. 2002. Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Res. Microbiol.153: 269-276. 51. Ramirez-Villapudua J. 1987. Control of cabbage yellows (Fusarium oxysporum f. sp. conglutinans) by solar heating of field soils amended with dry cabbage residues. Plant Dis. 71: 217-221. 52. Reuveni, R., Raviv, M., Krasnovsky, A., Freiman, L., Medina, S., and Bar, A. 2002. Compost induces protection against Fusarium oxysporum in sweet basil. Crop Prot. 21: 583-587. 53. Rivas, R., Velazquez, R. R. E., Zurdo-Pineiro, J.L., Mateos, P. F., and Molina, E. M. 2004. Identification of microorganisms by PCR amplification and sequencing of a universal amplified ribosomal region present in both prokaryotes and eukaryotes. J. Microbiol. Methods 56: 413-426. 54. Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M., and Perez-Garcia, A. 2007. The Iturin and fengycin families of lipopeptides are key factor in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Microbe. Inter. 20: 430-440. 55. Snyder, W. C., and Hansen, H. N. 1940. The species concept in Fusarium. Am. J. Bot. 27: 64-67. 56. Schnurer, J., and Rosewall, T. 1982. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Environ. Microbial. 46: 1256-1261. 57. Sun, S. K., and Huang, J. W. 1985. Formulated soil amendment for controlling Fusarium wilt and other soilborne disease. Plant Dis. 69: 917-920. 58. Strohl W. R. 1997. Industrial antibiotics: today and the future. Pages: 3-35 In: Biotechnology of Antibiotics W. R. Strohl (ed). Marcel Dekker Ins, New York. 59. Szczech, M. M. 1999. Suppressiveness of vermicompost against Fusarium wilt of tomato. J. Phytopathol., 147: 155-161. 60. Siddiqui, Y., Meon, S., Ismail, M. R., and Ali, A. 2008. Trichoderma fortified compost extracts for the control of choanephora wet rot in okra production. Crop Prot. 27: 385-390. 61. Surinivasan, K., Gilardi, K., Garibaldi, A., and Gullino, M. L. 2009. Efficacy of bacterial antagonists and different commercial products against Fusarium wilt on rocket. Phytoparasitica 37: 179-188. 62. Toussoun, T. A., and Nelson, P. E. 1968. A Pictorial Guide to The Identification of Fusarium Species According to The Taxonomic System of Snyder and Hansen. Pennsylvania State University Press, University Park, USA. 51 pp. 63. Trillas-Gay, M. I., Hoitink, H. A. J., and Madden, L. V. 1986. Nature of suppression of Fusarium wilt of radish in a container medium amended with composted hardwood bark. Plant Dis. 70: 1023-1027. 64. Tunlid, A., Hoitink, H. A. J., Low, C., and White, D. C.. 1989. Characterization of bacteria that suppress Rhizoctonia damping-off in bark compost media by analysis of fatty acid biomarkers. Appl. Environ. Microbiol. 55: 1368-1374. 65. Trillas, I., Aviles, M., Ordovas, J., Bello, A., and Tello, J. C. 2002. Using compost as a methyl bromide alternative. BioCycle 43: 64-68. 66. Trillas, M. I., Casanova, E., Cotxarrera, L., Ordovas, J., Borrero, C., and Aviles, M. 2006. Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biol. Control 39: 32-38. 67. Walker. J. C. 1930. Effect of environmental factors upon the resistance of cabbage to yellows. J. Agri. Res. 41: 1-15. 68. Weller, D. M., Raaijmakers, J. M., McSpadden Gardener, B., and Thomashow, L. S. 2002 Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40: 309-348. 69. Zhang, W., Han, D. Y., Dick, W. A., Davis, K. R., and Hoitink, H. A. J. 1998. Compost and compost water extract-induced systemic acquired resistance in cucumber and Arabidopsis. Phytopathology 88: 450-455.
摘要: 甘藍黃葉病是由Fusarium oxysporum f. sp. conglutinans引起,為重要的土壤傳播性病害,可造成苗期或本田期甘藍植株黃化、萎凋及死亡。目前防治甘藍黃葉病的防治方法中,最有效的兩種方法為抗病育種及土壤燻蒸。土壤燻蒸劑對環境安全有疑慮,故不建議使用;此外發展抗病育種需要較長的時間,且育成不易,因此亟須發展其他有效防治甘藍黃葉病的策略。本研究主要目的在於利用香菇太空包堆肥調配適於甘藍幼苗發育,且兼具有抑制甘藍黃葉病發生的栽培介質;此外也嘗試配合有益微生物及有機添加物增強栽培介質對於甘藍黃葉病的抑病功效。 自雲林、苗栗等地採集甘藍罹病植株分離獲得15菌株後,依病原性測定、形態特徵及其ITS序列比對,將FOC-JR01及 FOC-YL08菌株學名鑑定為Fusarium oxysporum f. sp. conglutinans (Sch. ex Fr.) Snyd. & Hans.。本病原菌菌絲生長的最適溫度為28℃。將甘藍(農友,高峰品種)種子播種於菌量濃度為103、104及105 ( cfu/ g soil ) 的人工病菌土中,7天後甘藍幼苗被感染率分別達60%、78%及100%。香菇太空包堆肥的水萃取液對於病原菌FOC-JR01及FOC-YL08的分生孢子發芽抑制率分別為26%及11%。在荷蘭BVB No.4泥炭苔栽培介質中加入香菇太空包堆肥的濃度超過50 % (v/v)時,不利於甘藍幼苗的生長;惟若以香菇太空包堆肥與泥炭苔以1:1 (v/v)比例組合成的SFMC50栽培介質,則可使甘藍幼苗的鮮重與乾重表現最為優異;此外將甘藍種植於含有病原菌菌量104 cfu/ ml cultural medium的SFMC50栽培介質中,可使甘藍幼苗的發病率較對照組低17%,也可以使甘藍黃葉病菌的存活率明顯較對照組減少20%。在SFMC50混拌入牛血粉或蝦蟹殼粉2% (w/v),在28℃,7天後可以降低病原菌在栽培介質內的存活率達100%或39%。自發病甘藍田土、甘藍健株根部、SFMC50栽培介質及添加牛血粉(2% w/v)或蝦蟹殼粉之栽培介質中分離獲得183菌株的細菌分別與F. oxysporum f. sp. conglutinans FOC-YL08 在馬鈴薯葡萄糖牛肉煎汁培養基平板進行對峙培養,結果顯示有128株菌株具有抑制 F. oxysporum f. sp. conglutinans FOC-YL08 菌絲生長的效果,其中有56株菌株對於FOC-YL08菌絲生長抑制率可達50%以上。在SFMC50中以106 cfu/ ml 的生物防治菌株AU-001, JU-019, JU-020, 2402 或 NP01分別均勻混拌,結果發現它們和未處理之對照組相比可以使甘藍黃葉病的發生率降低60%以上。將拮抗微生物之16s rDNA序列與NCBI基因資料庫作比對,發現具有防治潛力的菌株AU-001屬於Bacillus licheniformis,JU-019及JU-020皆屬於Bacillus subtilis,而2402及NP-01則是屬於Bacillus mycoides。 綜合前述成果,本研究成功研發出兩種抑制甘藍黃葉病的栽培介質,其一為 SFMC50 栽培介質和0.75% (w/v) 蝦蟹殼粉均勻混合後接種 JU-020 菌株,製成SFMC50-S20栽培介質,和對照組相比可以有效抑制甘藍幼苗發病率達76%;其二則是SFMC50 栽培介質和0.25% (w/v) 牛血粉均勻混合並接種JU-019,製成SFMC50-B19栽培介質,和對照組相比可以有效抑制甘藍幼苗發病率達85%。SFMC50-S20栽培介質抑制甘藍黃葉病發生的機制,可能與其有較高的pH值、微生物活性及Bacillus屬細菌在栽培介質中產生的幾丁質分解酵素與Iturin A抑菌物質等因素存在有密切的關係。
Cabbage yellows caused by Fusarium oxysporum f. sp. conglutinans (Wollenweb.) W. C. Snyder and H. N. Hansen, is one of the most common soilborne diseases of cabbage in the world. It cause yield loss of cabbage seedlings and plants. The best ways to control cabbage yellows are breeding resistant cultivars and using soil fumigation. Soil fumigation was banned due to concerns of human health and environmental safety. Furthermore, there is no resistant cultivar reported in Taiwan. So it is in an urgent need for us to develop new methods to control cabbage yellows. The objective of the research is to develop a bio-formulated cultural medium from spent forest mushroom compost (SFMC) amended with beneficial bacteria and organic materials for control of cabbage yellows. In the study, fifteen isolates FOC-JR01~06 and FOC-YL01~09 were obtained from diseased cabbage plants from Yun-lin and Meau-li, and identified as F. oxysporum f. sp. conglutinans according to their pathogenicity test, morphological and molecular characteristics. Isolate FOC-JR01 and FOC-YL08 grew well at 24-30℃, but optimal at 28℃.The infection rates of cabbage seedlings by the pathogen in 103, 104, 105 (cfu/ g soil) infested soil were 60%, 78% and 100% respectively at the 7th day after planting. Water extract of SFMC could inhibit 11%-26% of conidial germination of the pathogen. Nine cultural media prepared from the spent forest mushroom compost (SFMC) mixed with different ratio of BVB No.4 peat moss were tested for their efficacy on supporting the growth of cabbage seedlings. SFMC50 cultural medium consisted of spent forest mushroom compost and BVB No.4 peat moss at the ratio of 1:1 (v/v) was much more suitable for the growth of cabbage seedlings, and it could also reduce 17% disease incidence of cabbage yellows compared to BVB No.4 peat moss as a control. Amendment of SFMC50 with 2% (w/v) blood meal or shrimp and crab shell powder did respectively reduce 100% or 39% population densities of the pathogen for seven days at 28℃ in the growth chamber. Fifty six bacterial strains isolated from healthy cabbage stem, root, infested soil and SFMC50 with amendment of 2% (w/v) blood meal or shrimp and crab shell powder were significantly effective in inhibiting more than 50% of mycelial growth on potato nutrient agar plates. SFMC50 mixed respectively with bacterial suspension of strain AU-001, JU-019, JU-020, 2402 or NP01 at a concentration of 106 (cfu/ ml) was more effective in reducing more than 60% disease incidence of cabbage seedlings caused by F. oxysporum f. sp. conglutinans compared to non treatment SFMC50 as a control. These antagonistic bacteria were analyzed by 16S rDNA and comparing the gene sequence of ITS region of these antagonistic bacterial strains with the NCBI data base, the results indicated that AU-001 is identified as Bacillus licheniformis, JU-019 and JU-020 are Bacillus subtilis, 2402 and NP-01 are Bacillus mycoides. A SFMC50-S20 cultural medium was formulated with SFMC50, 0.75% (w/v) SCSP and cell suspension of B. subtilis JU-020. The SFMC-S20 was very effective in reducing 76% disease incidence of cabbage seedlings compared to SFMC50 as a control. In addition, SFMC50-B19 cultural medium was also formulated with using SFMC50, 0.25% (w/v) BLM and cell suspension of JU-019. The SFMC50-B19 was very effective in reducing 85% disease incidence of cabbage seedlings compared to SFMC50 as a control. In our studies, the results indicated that higher pH value, microbial activity and the production of chitinase and iturin A from Bacillus spp. in the SFMC50-S20 cultural medium might be related with its mechanism for control of cabbage yellows.
URI: http://hdl.handle.net/11455/31996
其他識別: U0005-0808201217125900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0808201217125900
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.