請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/31999
標題: 辣椒炭疽病菌高度分枝侵入構造(HBPS)的誘導與調控
Induction and regulation of highly branched penetration structure of Colletotrichum acutatum
作者: 陳美雅
Chen, Mei-Ya
關鍵字: 辣椒炭疽病菌
Colletotrichum acutatum
高度分枝侵入構造
訊號傳遞路徑
外在環境因子
光照
highly branched penetration structure (HBPS)
signal transduction pathway
environmental factors
light
出版社: 植物病理學系所
引用: 廖建堯。 2010。 辣椒炭疽病菌 (Colletotrichum acutatum) 入侵過程及其可能毒力因子探討。國立中興大學植物病理學系所學位論文。70p。 Ahn IP, Uhm KH, Kim S, Lee YH. 2003. Signaling pathways involved in preinfection development of Colletotrichum gloeosporioides, C. coccodes, and C. dematium pathogenic on red pepper. Physiol. Mol. Plant Pathol. 63: 281-289. Barrett JF, Hoch JA. 1998. Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob. Agents Chemother. 42: 1529-1536. Chefetz B. 2003. Sorption of phenanthrene and atrazine by plant cuticular fractions. Environ.Toxicol. Chem. 22:2492-2298. Chen C, Dickman MB. 2002. Colletotrichum trifolii TB3 kinase, a COT1 homolog, is light inducible and becomes localized in the nucleus during hyphal elongation. Eukaryot. Cell. 1:626-633. Chung KR. 2003. Involvement of calcium/calmodulin signaling in cercosporin toxin biosynthesis by Cercospora nicotianae. Appl. Environ. Microbiol. 69:1187-1196. Collinge AJ, Fletcher MH, Trinci A. 1978. Physiology and cytology of septation and branching in a temperature-sensitive colonial mutant (cot 1) of Neurospora crassa. Trans. Br. Mycol. Soc. 71:107-120. Dean RA. 1997. Signal pathways and appressorium morphogenesis. Annu. Rev. Phytopathol. 35:211-234. Divecha N, Irvine RF. 1995. Phospholipid signaling. Cell 80:269-279. Egea C, Alcazar MD, Candela ME. 1996. Capsidiol: Its role in the resistance of Capsicum annuum to Phytophthora capsici. Physiol. Plant. 98:737-742. Fujimura M, Ochiai N, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I. 2000. Sensitivity to phenylpyrrole fungicides and abnormal glycerol accumulation in Os and Cut mutant strains of Neurospora crassa. J. Pestic. Sci. 25:31-36. Gorovits R, Yarden O. 2003. Environmental suppression of Neurospora crassa cot-1 hyperbranching: a link between COT1 kinase and stress sensing. Eukaryot. Cell. 2:699-707. Hadden JF, Black LL. 1989. Anthracnose of Pepper Caused by Colletotrichum spp. Proceeding of the International Symposium on Integrated Management Practices: Tomato and Pepper Production in the Tropics. AsianVegetable Research and Development Center, Taiwan. p189-199 Isaac S, 1992. Fungal Plant Interactions. Chapman and Hall Press, London, p 115. Johnson EJ, Dorot O, Liu J, Chefetz B, Xing B. 2007. Spectroscopic characterization of aliphatic moieties in four plant cuticles. Commun. Soil Sci. Plant Anal. 38: 2461-2478. Jones CA, Greer-Phillips SE, Borkovich KA. 2007. The response regulator RRG-1 functions upstream of a mitogen-activated protein kinase pathway impacting asexual development, female fertility, osmotic stress, and fungicide resistance in Neurospora crassa. Mol. Biol. Cell 18:2123-2136. Kim SH, Yoon JB, Do JW, Park HG, 2007. Resistance to anthracnose caused by Colletotrichum acutatum in chili pepper (Capsicum annuum L.). J. Crop Sci. Biotechnol. 10: 277-280. Kim YK, Kawano T, Li D, Kolattukudy PE. 2000. A mitogen-activated protein kinase kinase required for induction of cytokinesis and appressorium formation by host signals in the conidia of Colletotrichum gloeosporioides. The Plant Cell Online 12:1331-1344. Kim YK, Li D, Kolattukudy PE. 1998. Induction of Ca2+-calmodulin signaling by hard-surface contact primes Colletotrichum gloeosporioides conidia to germinate and form appressoria. J. Bacteriol. 180:5144-5150. Kojima K, Takano Y, Yoshimi A, Tanaka C, Kikuchi T, Okuno T. 2004. Fungicide activity through activation of a fungal signalling pathway. Mol. Microbiol. 53:1785-1796. Koretke KK, Lupas AN, Warren PV, Rosenberg M, Brown JR. 2000. Evolution of two-component signal transduction. Mol. Biol. Evol. 17:1956-1970. Kraikruan W, Sangchote S, Sukprakarn S. 2008. Effect of capsaicin on germination of Colletotrichum capsici conidia. Kasetsart J. (Nat. Sci.) . 42:417-422. Latunde DA, O''connell R, Nash C, Pring R, Lucas J, Bailey J.1996. Infection process and identity of the hemibiotrophic anthracnose fungus Colletotrichum destructivum from cowpea (Vigna unguiculata). Mycol. Res. 100:1133-1141. Lee MH, Bostock RM. 2006. Induction, regulation, and role in pathogenesis of appressoria in Monilinia fructicola. Phytopathology 96:1072-1080. Lengeler KB, Davidson RC, D''souza C, Harashima T, Shen WC, Wang P, Waugh M, Heitman J. 2000. Signal transduction cascades regulating fungal development and virulence. Microbiol. Mol. Biol. Rev. 64:746-785. Liao CY, Chen MY, Chen YK, Kuo KC, Chung KR, Lee MH. 2011. Formation of highly branched hyphae by Colletotrichum acutatum within the fruit cuticles of Capsicum spp. Plant Pathol. 61:262-270. Nagygyörgy ED, Hornok L, Ádám AL. 2011. Role of MAP kinase signaling in secondary metabolism and adaptation to abiotic/fungicide stress in Fusarium. In: Thajuddin N, editor. Fungicides: InTechWeb, Rijeka, Croatia. Norbeck J, Blomberg A. 2000. The level of cAMP‐dependent protein kinase A activity strongly affects osmotolerance and osmo-instigated gene expression changes in Saccharomyces cerevisiae. Yeast 16:121-137. O''connell R, Bailey J, Richmond D. 1985. Cytology and physiology of infection of Phaseolus vulgaris by Colletotrichum lindemuthianum. Physiol. Plant Pathol. 27:75-98. Ochiai N, Fujimura M, Motoyama T, et al. 2001. Characterization of mutations in the two‐component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os‐1 mutants of Neurospora crassa. Pest Manag. Sci. 57: 437-442. Ochiai N, Tokai T, Nishiuchi T, Takahashi-Ando N, Fujimura M, Kimura M. 2007. Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum. Biochem. Biophys. Res. Commun. 363: 639-644. Parbery D, Blakeman J. 1978. Effect of substances associated with leaf surfaces on appressorium formation by Colletotrichum acutatum. Trans. Br. Mycol. Soc. 70:7-19. Perfect SE, Hughes HB, O''connell RJ, Green JR. 1999. Colletotrichum: A model genus for studies on pathology and fungal-plant interactions. Fungal Genet. Biol. 27: 186-198. Podila GK, Rogers LM, Kolattukudy PE. 1993. Chemical signals from avocado surface wax trigger germination and appressorium formation in Colletotrichum gloeosporioides. Plant Physiol. 103: 267-272. Prusky D, Freeman S, and Dickman MB. 2000. Colletotrichum: Host Specificity, Pathology and Host Pathogen Interaction of Colletotrichum.American Phytopathological Society, St. Paul, MN, U.S.A. Reissig JL, Kinney SG. 1983. Calcium as a branching signal in Neurospora crassa. J. Bacteriol. 154:1397-1402. Rispail N, Soanes DM, Ant C, Czajkowski R, Grunler A, Huguet R, Nadales EP, Poli A, Sartorel E, Valiante V, Yang M, Beffa R. 2009. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genet. Biol. 46, 287-298. Rollins JA, Dickman MB. 1998. Increase in endogenous and exogenous cyclic AMP levels inhibits sclerotial development in Sclerotinia sclerotiorum. Appl. Environ. Microbiol. 64: 2539-2544. Segmüller N, Ellendorf U, Tudzynski B, Tudzynski P. 2007. BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot. Cell. 6:211-221. Shaw BD, Hoch H. 2000. Ca2+ regulation of Phyllosticta ampelicida pycnidiospore germination and appressorium formation. Fungal Genet. Biol. 31:43-53. Simão RCG, Gomes SL. 2001. Structure, Expression, and Functional Analysis of the Gene Coding for Calmodulin in the Chytridiomycete Blastocladiella emersonii. J. Bacteriol. 183: 2280-2288. Tegelaar EW, Kerp H, Visscher H, Schenck PA, De Leeuw JW. 1991. Bias of the paleobotanical record as a consequence of variations in the chemical composition of higher vascular plant cuticles. Paleobiology 17:133-144. Tozze, JH, Massola JN, Camara M, Gioria R, Suzuki O, Brunelli K, Braga R. 2010. First report of Colletotrichum boninense causing anthracnose on pepper in Brazil. Eur. J. Plant Pathol. 127:73-87. Uhm KH, Ahn IP, Kim S, Lee YH. 2003. Calcium/calmodulin-dependent signaling for prepenetration development in Colletotrichum gloeosporioides. Phytopathology 93:82-87. Verde F, Wiley DJ, Nurse P, 1998. Fission yeast orb6, a ser/thr protein kinase related to mammalian rho kinase and myotonic dystrophy kinase, is required for maintenance of cell polarity and coordinates cell morphogenesis with the cell cycle. Proc. Natl. Acad. Sci. U. S. A. 95:7526-7531. Warwar V, Dickman MB. 1996. Effects of calcium and calmodulin on spore germination and appressorium development in Colletotrichum trifolii. Appl. Environ. Microbiol. 62:74-79. Wolanin PM, Webre DJ, Jeffry B. 2003. Mechanism of phosphatase activity in the chemotaxis response regulator CheY. Biochemistry.42:14075-14082. Xu JR. 2000. MAP kinases in fungal pathogens. Fungal Genet. Biol. 31:137-152. Xu JR, Hamer JE. 1996. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 10:2696-2706. Yan L, Yang Q, Jiang J, Michailides TJ, Ma Z. 2011. Involvement of a putative response regulator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea. Appl. Microbiol. Biotechnol. 90:215-226. Yan L, Yang Q, Sundin GW, Li H, Ma Z. 2010. The mitogen-activated protein kinase kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea. Fungal Genet. Biol. 47: 753-760. Yoshimi A, Tsuda M, Tanaka C. 2004. Cloning and characterization of the histidine kinase gene Dic1 from Cochliobolus heterostrophus that confers dicarboximide resistance and osmotic adaptation. Mol. Genet. Genomics. 271:228-236
摘要: 辣椒是台灣重要的熱帶栽培作物之一,在台灣 C. acutatum 是造成辣椒炭疽病的的重要病原菌之一,當 C. acutatum 嚴重感染辣椒果實時,可造成辣椒嚴重損失。本實驗室前人的研究中首度發現 C. acutatum 可在辣椒果實的角質層形成一個高度分枝的侵入構造稱 “Highly branched penetration structure”。本研究主要是探討辣椒炭疽病菌高度分枝侵入構造的誘導與調控。首先使用有機溶劑萃取四層辣椒角質層 PC1、PC2、PC3 與 PC4, 並探討 C. acutatum Coll-153 菌株在這四種角質層的 HBPS 形成情形,結果 Coll-153 可在 PC1 與 PC2 中形成高比例的 HBPS ,但無法在 PC3 與 PC4 中形成。由於 Coll-153 可在 PC2 形成最高比例的 HBPS,因此以 PC2 進行 HBPS 的誘導與調控因子之分析。實驗結果顯示外在環境因子之光照及滲透壓皆會影響 HBPS 的形成,其中以光照之影響最為顯著,當光照時間愈長時, HBPS 形成比例愈低。溫度及殺菌劑處理並不影響 HBPS 的形成。若早期處理產生氧化的藥劑則可抑制 HBPS 的情形,但於後期處理則無影響。以作用於細胞之不同訊息傳遞途徑之化學藥劑處理以探討 HBPS 形成的調控,結果顯示 HBPS 的形成受到 cAMP dependent protein kinase A (PKA) 、PIP3 及 MAP kinase 所媒介之訊息傳遞路徑所調控,HBPS 的形成亦受到細胞內的鈣離子濃度所調控,但 HBPS 的形成卻不受鈣離子幫浦 A23187、 鈣離子通道抑制劑 nicardipine hydrochloride 及第二型鈣離子/鈣調素依存型蛋白質激酶抑制劑 KN93 所調控。將光照、neomycin sulfate 及 cAMP 處理的條件應用在群香綠果接種試驗,結果三種處理條件對 HBPS 在辣椒果實之角質層的形成皆沒有影響, 但特定濃度的 neomycin sulfate 會抑制病斑的擴展。
Chili pepper (Capsicum spp.) anthracnose caused by Colletotrichum acutatum results in severe losses in yield and fruit quality in Taiwan. Our previous study has shown that C. acutatum penetrates the cuticle layer of chili pepper fruits by forming a highly branched penetration structure (HBPS) which was not previously characterized in any Colletotrichum-plant interactions. The purpose of the study is to investigate the induction and regulation of HBPS formation. Cuticle layer PC1, PC2, PC3 and PC4 from pepper fruit were isolated (Capsicum annuum, GroupZest) C. acuttaum strain Coll-153 forms high proportion of HBPS in PC1 and PC2, but hardly forms HBPS in PC3 and PC4. Overall C. acutatum forms the highest frequency of HBPS in PC2. Therefore, PC2 was used to study factors involved in HBPS induction and regulation. The results show that HBPS formation can be regulated by light and osmotic stress. Light has highly significant impact on HBPS formation, the longer exposure time the lower proportion of HBPS formation. The formation of HBPS doesn’t seem to be regulated by stress caused by temperature and fungicides. Oxidative stress, when treated at early stage, was able to inhibit HBPS formation, but the inhibition was not found when treated at late stage. Pharmacological effectors of signal transduction pathways were used to study the regulation of HBPS formation. HBPS formation was found to be inhibited by the stimulators of cAMP dependent protein kinase A and by the inhibitors of phospholipase C and MAP kinase. The imbalance of cellular calcium level also seems to have a role on HBPS formation. However, HBPS was not inhibited by calcium ionophore A23187, calcium channel blocker nicardipine hydrochloride and calcium/calmodulin kinase II inhibitor. Light, neomycin sulfate and cAMP did not inhibit HBPS formation in chili pepper fruits when treated on 18 h post-inoculated fruits. However, certain amounts of neomycin sulfate could reduce disease of chili pepper fruits caused by C. acutatum Coll-153.
URI: http://hdl.handle.net/11455/31999
其他識別: U0005-2408201216133100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2408201216133100
顯示於類別:植物病理學系

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。