Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3209
標題: 填充矽通孔之新穎電鍍鎳鎢合金配方
A Novel Nickel-Tungsten Alloy Plating Formula for Filling Through Silicon Vias
作者: 黃馨嫚
Huang, Hsin-Man
關鍵字: 填充矽通孔
Through Silicon Vias
合金電鍍
鎳鎢合金
Nickel-Tungsten Alloys
出版社: 化學工程學系所
引用: 第 8 章 參考文獻 1 T. R. Rosebrugh and W. L. Miller, “Mathematical Theory of the Change of Concentration at the Electrode, Brought about by Diffusion and by Chemical Reaction”, J. Phys. Chem., 14, 816, 1910. 2 J. J. Sun, K. Kondo, T, Okamura, S. Oh, M. Tomisaka, H, Yonemura, M. Hoshion, and K. Takahashi, “High-Aspect-Ratio Copper Via Filling Used for Three Dimensional Chip Stacking”, J. Electrochem. Soc., 150, 355, 2003. 3 K. Kondo, T. Yonezawa, D. Mikami, T. Okubo, Y. Taguchi, K. Takahashi, and D. P. Barkey, “High-Aspect-Ratio Copper-Via-Filling for Three-Dimensional Chip Stacking”, J. Electrochem. Soc., 152, H173, 2000. 4 N. V. Mandich, “Pulse and Pulse-Reverse Electroplating”, Met. Finish., 98, 374, 2000. 5 L. Xu, P. Dixit, J. Miao, and J. H. L. Pang.“Through-Wafer Electroplated Copper Interconnect with Ultrafine Grains and High Density of Nanotwins”, Appl. Phys. Lett., 90, 033111, 2007. 6 胡啟章,“電化學原理與方法”,五南圖書出版股份有限公司,2002年。 7 H. Xiao, “Introduction of Semiconductor Manufacturing Technology”, Prentice-Hall Inc., New Jersey, 2001. 8 張勁燕,“VLSI概論”,五南圖書出版股份有限公司,2008年。 9 P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, “Damascene Copper Electroplating for Chip Interconnections”, IBM J. Res. & Develop., 42, 567, 1998. 10 羅正忠、張鼎張,“半導體製程技術導論”,台灣培生教育出版股份有限公司,2009年。 11 T. B. Massalski, “Binary Alloy Phase Diagrams”, ASM International, Material Park, OH, p.2703, 1990. 12 C. S. Shin, Y. W. Kim, D. Gall, J. E. Greene, and I. Petrov, “Phase Composition and Microstructure of Polycrystalline and Epitaxial TaNx Layers Grown on 103 Oxidized Si(001) and MgO(001) by Reactive Magnetron Sputter Deposition”, Thin Solid Film, 402, 172, 2002. 13 O. Luhn, C. V. Hoof, W. Ruythooren, and J.-P. Celis, “Barrier and Seed Layer Coverage in 3D Structures with Different Aspect Ratios using Sputtering and ALD Processes”, Microelectron. Eng., 85, 1947, 2008. 14 S. B. Antonelli, T. L. Allen, D. C. Johnson, and V. M. Dubin, “Crystallization Behavior of Ni-P Alloy Films on Co and Cu Seed Layers”, J. Electrochem. Soc., 152, J120, 2005. 15 T. Osaka, N. Takano, T. Kurokawa, T. Kaneko, and K. Ueno, “Electroless Nickel Ternary Alloy Deposition on SiO2 for Application to Diffusion Barrier Layer in Copper Interconnect Technology”, J. Electrochem. Soc., 149, C573, 2002. 16 V. Dubin, Y. Shacham-Diamand, B. Zhao, and P.K. Vasudev, “Simulation of Electroless Deposition of Cu Thin Films for Very Large Scale Integration Metallization”, J. Electrochem. Soc., 144, 898, 1997. 17 E. Rudnik and J. Gorgosz, “The Influence of Maleic Acid on the Co–P Electroless Deposition”, Surf. Coat. Technol., 201, 6953, 2007. 18 Y. Shacham-Diamand, A. Zylberman, N. Petrov, and Y. Sverdlov, “Electroless Co(Mo,P) Films for Cu Interconnect Application”, Microelectron. Eng., 64, 315, 2002. 19 Y. Sverdlov, V. Bogush, H. Einati, and Y. Shacham-Diamand, “Electrochemical Study of the Electroless Deposition of Co (W,B) Alloy”, J. Electrochem. Soc., 152, C631, 2005. 20 H. Nakano, T. Itabashi, and H. Akahoshi, “Electroless Deposited Cobalt-Tungsten-Boron Capping Barrier Metal on Damascene Copper Interconnection”, J. Electrochem. Soc., 149, C573, 2002. 21 柯賢文,“表面與薄膜處理技術”,全華科技圖書,2005 年。 22 V. M. Dubin, Y. Shacam-Diamand, B Zhao, P. K. Vasuder, and C. H. Ting, “Selective and Blanket Electroless Copper Deposition for Ultralarge Scale Integration”, J. Electrochem. Soc, 144, 898, 1997. 104 23 S. K. Ryu, T. Jiang, K. H. Lu, J. Im, H. Y. Son, K. Y. Byun, R. Huang, and P. S. Ho, “Characterization of Thermal Stresses in Through-Silicon Vias for Three-Dimensional Interconnects by Bending Beam Technique”, Appl. Phys. Lett., 100, 041901, 2012. 24 L. W. Kong, A. C. Rudack, P. Krueger, E. Zschech, S. Arkalgud, and A. C. Diebold, “3D-Interconnect:Visualization of Extrusion and Voids Induced in Copper-Filled Through-Silicon Vias (TSVs) at Various Temperatures using X-Ray Microscopy”, Microelectron. Eng., 92, 24, 2012. 25 S. H. Choa, C. G. Song, and H. S. Lee, “Investigation of Durability of TSV Interconnect by Numerical Thermal Fatigue Analysis”, Int. J. Precis. Eng. Man., 12, 589, 2011. 26 E. J. Cheng and Y. L. Shen, “Thermal Expansion Behavior of Through-Silicon- Via Structures in Three-Dimensional Microelectronic Packaing”, Microelectron. Reliab., 52, 534, 2012. 27 K. Zeng, R. Stierman, T. C. Chiu, D. Edwards, K. Ano, and K. N. Tu, “Kirkendall Void Formation in Eutectic SnPb Solder Joints on Bare Cu and Its Effect on Joint Reliability”, J. Appl. Phys., 97, 024508, 2005. 28 P. P. Bhattacharjee, R. K. Ray, and A. Upadhyaya, “Nickel Base Substrate Tapes for Coated Superconductor Applications”, J. Mater. Sci., 42, 1984, 2007. 29 G. A. Dosovitskiy, S. V. Samoilenkov, A. R. Kaul, and D. P. Rodionov, “Thermal Expansion of Ni-W, Ni-Cr, and Ni-Cr-W Alloys Between Room Temperature and 800℃”, Int. J. Thermophys, 30, 1931, 2009. 30 S. I. Simak, A. V. Ruban, and Y. H. Vekilov, “Thermodynamic, Mechanical and Thermal Properties of Ni-W Alloys from Harris Functional LMTO-CPA Calculations”, Solid State Commun., 87, 393, 1993. 31 楊聰仁,“無電鍍鎳及其應用”,國璋出版社,1987年。 32 張宏祥、王為,“電鍍工藝學”,天津科技出版社,2008年。 33 N. V. Parthasaradhy, “Practical Electroplating Handbook”, Prentice-Hall, 1989. 34 C. H. Huang, “Hydrolysis of Sulfamate Ion in Nickel Sulfamate Solution”, Plat. 105 Surf. Finish., 81, 64, 1994. 35 Y. M. Lin and S. Chern, “Effect of Additives and Chelating Agents on Eletroless Copper Plating”, Appl. Surf. Sci., 178, 116, 2001. 36 A. Brenner, “Electrodeposition of Alloys”, Vol. I & II, Academic Press, New York, 1963. 37 S. O. Moussa, M. A. M. Ibrahim, and S. S. A. E. Rehim, “Induced Electrodeposition of Tungsten with Nickel from Acidic Citrate Electrolyte”, J. Appl. Electrochem., 36, 333, 2006. 38 R. M. Krishnan, C. J. Kennedy, S. Jayakrishnan, S. Sriveeraraghavan, S. R. Natarajan, and P. G. Venkatakrishnan, “Electrodeposition of Nickel-Tungsten Alloys”, Met. Finish., 93, 33, 1995. 39 陳黼澤、黃大展、林招松、潘永寧,“電鍍鎳鎢合金之微結構與機械性質 ”, 中正領學報,第39卷,第一期,2010年。 40 N. Eliaz and E. Gileadi, “The Mechanism of Induced Codeposition of Ni-W Alloys”, ECS Trans., 2, 337, 2007. 41 O. Younes and E. Gileadi, “Electroplating of Ni/W Alloys”, J. Electrochem. Soc., 149, C100, 2002. 42 N. Eliaz and E. Gileadi, “Induced Codeposition of Alloys of Tungsten, Molybdenum and Rhenium with Transition Metals”, Modern Aspects of Electrochemistry, 2008. 43 張凱程,“氨基磺酸鎳電鍍槽參數測試”,2009年。 44 G. P. Xiang, “Theory and Practice of Reverse pulse current Electroplating”, Tianjin Science-Technology press, 1989. 45 K. C. Chan, N. S. Qu, and D. Zhu, “Effect of Reverse Pulse Current on the Internal Stress of Electroformed Nickel”, J. Mater. Process. Tech., 63, 819, 1997. 46 I. Mizushima, P. T. Tang, H. N. Hansen, and M. A.J. Somers, “Development of a New Electroplating Process for Ni-W Alloy Deposits”, Electrochim. Acta, 51, 888, 2005. 47 I. Mizushima, P. T. Tang, H. N. Hansen, and M. A.J. Somers, “Residual Stress in 106 Ni-W Electrodeposits”, Electrochim. Acta, 51, 6128, 2006. 48 H. Cesiulis, A. Baltutiene, M. Donten, M. L. Donten, and Z. Stojek, “Increase in Rate of Electrodeposition and in Ni(II) Concentration in the Bath as a Way to Control Grain Size of Amorphous/Nanocrystalline Ni-W alloys”, J. Solid State Electrochem., 6, 237, 2002. 49 M. Donten, Z. Stojek, and H. Cesiulis, “Formation of Nanofibers in Thin Layers of Amorphous W Alloys with Ni, Co, and Fe Obtained by Electrodeposition”, J. Electrochem. Soc., 150, C95, 2003. 50 O. Younes-Metzler, L. Zhu, and E. Gileadi, “The Anomalous Codeposition of Tungsten in The Presence of Nickel”, Electrochim. Acta, 48, 2551, 2003. 51 O. Younes and E. Gileadi, “Electroplating of High Tungsten Content Ni/W Alloys”, Electrochem. Solid-State Lett., 3, 543, 2000. 52 侯俊宇,“應用趨力有限,3D IC”,新通訊元件雜誌,第109期,2010年。 53 鍾文仁、陳佑任,“IC封裝製程與CAE應用”,全華科技圖書股份有限公司,2005年。 54 L. W. Schaper, S. L.Burkett, S. Spesshoefer, G. V. Vangara, Z. Rahman, and S. Polamreddy, “Architectural Implications and Process Development of 3-D VLSI Z-Axis Interconnect Using Through Silicon Vias”, IEEE., 28, 356, 2005. 55 S. L. Burkett, X. Qiao, D. Temple, B. Stoner, and G. McGuire, “Advanced Processing Technique for Though-Wafer Interconnects”, J. Vac. Sci. Technol. B, 22, 248, 2004. 56 A. Elpida, “Akita Elpida Memory Successfully Develops World’s Thinnest 1.4mm MCP with 20 Stacked Dies”, News Release, 2007. 57 T. Semiconductor, “Interconnected Wafer Stack”, Wafer stacking technology, 2003. 58 R. Beica, P. Siblerud, C. Sharbono, and M. Bernt, “Advanced Metallization for 3D Integration”, IEEE., 212, 2008. 59 N. T. Nguyen, E Boellaard, N. P. Pham, V. G. Kutchoukov, G. Craciun, and P. M. Sarro, “Through-Wafer Copper Electroplating for Three-Dimensional 107 Interconnects”, J Micromech. Microeng., 12, 395, 2002. 60 X. Zhang, TC Chai, J. H. Lau, C. S. Selvanayagam, K. Biswas, S. Liu, D. Pinjala, GY Tang, YY Ong, SR Vempati, E. Wai, HY Li, EB Liao, N. Ranganathan, V. Kripesh, J. Sun, J. Doricko, and C. J. Vath, “Development of Through Silicon Via (TSV) Interposer Technology for Large Die (21x21mm) Fine-pitch Cu/low-k FCBGA Package”, IEEE., 305, 2009. 61 P. Garrou, “How Might 3D ICs Come Together ”, Semiconductor International, 2008. 62 汪建民, “材料分析”,第三版,第五章,中國材料科學學會,2011年。 63 羅吉宗,“薄膜科技與應用”,全華圖書,2005年。 64 林昆明,“金相試片製備顯微組織觀察與分析”,材料基礎實驗,2003年。 65 張立,“微結構分析與電子顯微鏡學”,材料與社會雜誌,第37期,1990年。 66 柯志忠,“以原子層沉積製程成長氧化物薄膜與金屬奈米顆粒及其應用”, 國 家實驗研究院儀器科技研究中心,2007年。 67 蕭建男,“奈米結構原子級薄膜製程技術”,國家實驗研究院儀器科技研究中 心簡訊,第84期,2007年。 68 C. H. Lee, J. E. Bonevich, U. Bertocci, K. L. Steffens, and T. P. Moffat, “Superconformal Ni Electrodeposition Using 2-Mercaptobenzimidazole”, J. Electrochem. Soc., 158, D366, 2011. 69 C. H. Lee, J. E. Bonevich, J. E. Davies, and T. P. Moffat, “Superconformal Electrodeposition of Co and Co-Fe Alloys Using 2-Mercapto-5-benzimidazole- sulfonic Acid”, J. Electrochem. Soc., 156, D301, 2009. 70 S.-K. Kim, J. E. Bonevich, D. Josell, and T.P. Moffat, “Electrodeposition of Ni in Submicrometer Trenches”, J. Electrochem. Soc., 154, D443, 2007. 71 朱立群,“實用電鍍故障分析與處理技術”,國防工業出版社,2007年。 72 C. H. Lee, J. E. Bonevich, J. E. Davies, and T. P. Moffat, “Magnetic Materials for Three-Dimensional Damascene Metallization : Void-Free Electrodeposition of Ni an Ni70Fe30 Using 2-Mercapto-5-benzimidazolesulfonic Acid”, J. Electrochem. Soc., 155, D499, 2008. 108 73 W. P. Dow, H. S. Huang, M. Y. Yen, and H. C.Huang, “Influence of Convection Dependent Adsorption of Additives on Microvia Filling by Copper Electroplating”, J. Electrochem. Soc., 152, C425, 2005. 74 O. Luhn, J. P. Celis , C. V. Hoof , K. Baert, and W. Ruythooren, “Leveling of Microvias by Electroplating for Wafer-Level-Packaging”, ECS Trans., 6, 123, 2007. 75 M. Yokoi, S. Konishi, and T. Hayaashi, “Adsorption Behavior of Polyoxyenthyleneglycol on the Copper Surface in an Acid Copper Sulphate Bath”, Denki Kagaku, 52, 218, 1984. 76 W. P. Dow, M. Y. Yen, W. B. Lin, and S. W. Ho, “Influence of Molecular Weight of Polyethylene Glycol on Microvia Filling By Copper Electroplating”, J. Electrochem. Soc., 152, C769, 2005.
摘要: 摘要 三維晶片堆疊技術是近年來微電子領域中最受矚目的研究課題與發展,其中IC晶片堆疊中的矽通孔是連接傳訊的關鍵角色,其主要優點在於可縮短訊號傳遞路徑、縮小晶片所佔之空間及減少訊號延遲等特點,符合現今電子產品輕薄短小的趨勢。電化學沉積在矽通孔技術中扮演一重要角色,其中金屬銅沉積部分已普遍使用於三維堆疊領域。 在電化學沉積過程中,普遍使用鈍態金屬作為導體,如:銅、銀或金等類型。由於銅沉積技術已發展至相當成熟之程度,因此近年來將此超級填充方式延伸至磁性材質,如:鐵、鈷、鎳及鎢等金屬。近年由於鎢金屬抗腐蝕與低熱膨脹係數之特性所以備受矚目,但由於鎢金屬是以WO42-狀態存在於水溶液中,無法單獨進行電化學沉積,須以合金金屬型式進行電鍍沉積;其中以鎳鎢之合金搭配最具潛力,可有效提升鍍層之硬度、耐腐蝕、抗酸鹼及熱膨脹係數低等優勢,同時與避免金屬擴散之阻障層金屬材質相同,可取代原有之阻障層與晶種層直接電鍍,完成鎳鎢合金矽通孔。因此本論文致力於此金屬材質之矽通孔沉積研究,找尋其適用之合金比例、電流效率及添加劑等沉積條件。 本實驗主要以硫酸鎳與鎢酸鈉為鎳鎢合金電鍍液成份,其中以檸檬酸作為螯合劑。藉由改變添加劑、電流密度等不同的實驗變因,進而探討對於填充矽通孔之影響。由實驗結果明顯發現此鍍液易形成共形沈積的填孔模式,需搭配其他的添加劑來加以改善其沈積方式,以實際電鍍及多項的電化學分析方式,試驗不同的添加劑、電流密度及攪拌速率等變因,探討其對於填孔機制及鎳鎢含量之影響。
Abstract Three-dimensional (3D) chip stacking is a major focus in recent research and development of microelectronics, MEMS, and MOEMS technology. Through silicon vias (TSV) play a key role in IC chip stacking connections. A main advantage of TSV is the shortest chip-to-chip vertical interconnection, which allows for size reduction of the chip and reducing signal transmission delay. Electrodeposition plays an important role in TSV development, especially copper electrodeposition, which is a critical technology and generally used in 3D chip packaging. In TSV technology, the thermo-mechanical fatigue may lead to the TSV interconnects failures because the coefficient of thermal expansion (CTE) of copper is much higher than that of silicon. The package materials with different CTEs will induce large stresses at the interfaces. In order to overcome this problem, we choose tungsten to substitute copper. However, tungsten cannot be directly plated in an aqueous electrolytes, it can be co-deposited with iron group metals. Nickel-tungsten alloy has excellent corrosion resistance, wear resistance and mechanical strength, which is a favorable candidate. Traditional process for TSV is dry process that includes the following step: (1) formation of vias by reactive ion etching; (2) formation of a SiO2 isolation layer; (3) deposition of a TiN barrier layer and a copper seed layer; (4) electrodeposition of copper inside the via. In our research, we reduce the procedure of TSV using the wet process to substitute barrier and seed layer with CoWP, and electrodeposition with Ni-W alloy to make a copper-free process. In other words, a copper-free TSV with simplified processing steps is fabricated leading to lower fabrication cost, moreover, a low-stress TSV filled with low CTE metals is also fabricated to improve the thermo-mechanical fatigue of TSV leading to better package reliability. The Ni-W alloy was plated using NiSO4 and NaWO4 electrolytes; the additives included suppressor, accelerator, and surfactant. This Ni-W plating formula can achieve bottom-up filling of TSV with an aspect of 3.2 and a diameter of 20μm.
URI: http://hdl.handle.net/11455/3209
其他識別: U0005-2407201221200300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2407201221200300
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.