Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3215
標題: 導入鈀表面處理層對錫鋅銲料與銅基材間界面反應的影響
The Effects of Introducing a Palladium Surface Finish on The Interfacial Reactions Between Sn-Zn Solders and Cu Substrate
作者: 李博燻
Lee, Po-Hsun
關鍵字: 介金屬化合物
Intermetallic compound
無鉛銲料
表面處理
Lead-free solder
Surface finish
出版社: 化學工程學系所
引用: [1] 陳信文、陳立軒、林永森、陳志銘,「電子構裝技術與材料」,高立圖書,台北 (2004)。 [2] 鍾文仁、陳佑任,「IC封裝製程與CAE應用」,全華圖書 (2005)。 [3] 楊省樞,「覆晶新組裝技術」,工業材料,163期,第162-167頁 (2000)。 [4] 田民波、顏怡文,「半導體電子元件構裝技術」,五南圖書,第101頁 (2007)。 [5] G. Milad and M. Orduz, “Surface Finishes in a Lead-Free World,” Metal Finishing, Vol. 105, pp. 25-28 (2007). [6] 童家慶,「印刷電路板概論養成篇」,台灣電路板協會,桃園 (2005)。 [7] 白蓉生,「電路板與無鉛焊接」,台灣電路板協會,桃園 (2006)。 [8] P. Snugovsky, “Black Pad Metallography in Electronics,” Microscopy and Microanalysis Vol.8, (2002). [9] G. Milad and D. Gudeczauskas, “Getting the Lead Out of Surface Finishing,” Metal Finishing, Vol. 104, pp. 33-36 (2006). [10] C. T. Lu, H. W. Tseng, C. H. Chang, T. S. Huang, and C. Y. Liu, “Retardation of Electromigration-Induced Ni(P) Consumption by an Electroless Pd Insertion Layer,” Applied Physics Letters, Vol. 96, pp. 232103 (2010). [11] 劉雨雯,「RoHS綠色指令:全球環境規範&無鉛焊接技術」,龍璟文化 (2005)。 [12] 黃嘉緯、林光隆,「電子構裝無鉛銲錫的發展現況」,銲接與切割,13卷2期(2003)。 [13] 莊東漢、吳醒非、黃貴偉、顏秀芳、林修任,「銲錫接點界面反應生成介金屬形態及其動力學」,界面科學會誌,26卷2期,第71-82頁 (2004)。 [14] M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics,” Materials Science and Engineering, R27, pp. 95-141 (2000). [15] P. Nash and A. Nash, “Binary Alloy Phase Diagrams,” ed. T.B. Massalski, ASM, Materials Park, Vol. 3, (1990). [16] M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, “New Pb-free solder alloy with superior mechanical properties,” Applied Physics Letters, Vol. 63(1), pp. 15-17 (1993). [17] K. Suganuma, K. Niihara, T. Shoutoku, and Y. Nakamura, “Wetting and interface microstructure between Sn-Zn binary alloys and Cu,” Journal of Materials Research, Vol. 13(10), pp. 2859-2866 (1998). [18] 林光隆、宋振銘、黃家緯,「Sn-Zn系列無鉛銲錫合金與基材界面金屬間化合物生成之探討」,界面科學會誌,26卷8期,第61-70頁 (2004)。 [19] T. C. Chang, M. H. Hon, and M. C. Wang, “Intermetallic compounds formation and interfacial adhesion strength of Sn-9Zn-0.5Ag solder alloy hot-dipped on Cu substrate,” Journal of Alloys and Compounds, Vol. 352, pp. 168-174 (2003). [20] K. Suganuma, K. Niihara, T. Shoutoku, and Y. Nakamura, “Wetting and interface microstructure between Sn-Zn binary alloys and Cu,” Journal of Materials Research, Vol. 13(10), pp. 2859-2866 (1998). [21] D. Q. Yu, H. P. Xie, and L. Wang, “Investigation of interfacial microstructure and wetting property of newly developed Sn-Zn-Cu solder with Cu substrate,” Journal of Alloys and Compounds, Vol. 385, pp. 119-125 (2004). [22] T. C. Chang, M. H. Hon, and M. C. Wang, “Adhesion Strength of the Sn-9Zn-xAg/Cu Interface,” Journal of Electronic Materials, Vol. 32(6), pp. 516-522 (2003). [23] Y. S. Kim, K. S. Kim, C. W. Hwang, and K. Suganuma, “Effect of composition and cooling rate on microstructure and tensile properties of Sn-Zn-Bi alloys,” Journal of Alloys and Compounds, Vol. 352, pp. 237-245 (2003). [24] T. C. Chang, M. C. Wang, and M. H. Hon, “Effect of aging on the growth of intermetallic compounds at the interface of Sn-9Zn-xAg/Cu substrates,” Journal of Crystal Growth, Vol. 250, pp. 236-243 (2003). [25] K. L. Lin, and C. L. Shih, “Wetting Interaction between Sn-Zn-Ag Solders and Cu,” Journal of Electronic Materials, Vol. 32(2), pp. 95-100 (2003). [26] S. C. Chang, S. C. Lin, and K. C. Hsieh, “The Foemation and Growth of Intermetallic Compounds in Sn-Zn and Sn-Zn-Al Solder with Ni/Au Surface Finish,” Journal of Electronic Materials, Vol. 35(3), pp. 399-405 (2006). [27] K. L. Lin, P. C. Liu, and J. M. Song, “Wetting Interaction between Pb-free Sn-Zn Series Solders and Cu,Ag Substrates,” IEEE Electronic Components and Technology Conference, pp. 1310-1313 (2004). [28] C. S. Lee and F. S. Shieu, “Growth of Intermetallic Compounds in the Sn-9Zn/Cu Joint,” Journal of Electronic Materials, Vol. 35(8), pp. 1660-1664 (2006). [29] 陳志豪,「共晶SnZn銲料與塊材和薄膜Cu基材間界面反應之探討」,碩士論文,國立中興大學化學工程研究所,台中 (2007)。 [30] C. M. Chen and C. H. Chen, “Interfacial reactions between Eutectic SnZn solder and Bulk or Thin-Film Cu Substrates,” Journal of Electronic Materials, Vol. 36, No. 10, pp. 1363-1371 (2007). [31] J. W. Yoon and S. B. Jung, “Interfacial reactions and shear strength on Cu and electrolytic Au/Ni metallization with Sn-Zn solder,” Journal of Materials Research, Vol. 21(6), pp. 1590-1598 (2006). [32] K. Suganuma, T. Murata, H. Noguchi, and Y. Toyoda, “Heat resistance of Sn-9Zn solder/Cu interface with or without coating,” Journal of Materials Research, Vol. 15(4), pp. 884-891 (2000). [33] C. W. Huang and K. L. Lin, “Interfacial reactions of lead-free Sn-Zn based solders on Cu and Cu plated electroless Ni-P/Au layer under aging,” Journal of Materials Research, Vol. 19(12), pp. 3560-3568 (2004). [34] M. Date, T. Shoji, M. Fujiyoshi, K. Sato, and K. N. Tu, “Ductile-to-brittle transition in Sn-Zn solder joints measured by impact test,” Scripta Materialia, Vol. 51, pp. 641-645 (2004). [35] M. Date and K. N Tu, “Interfacial reactions and impact reliability of Sn-Zn solder joints on Cu or electroless Au/Ni(P) bond-pads,” Journal of Materials Research, Vol. 19(10), pp. 2887-2895 (2004). [36] J. Y. Wang, C. F. Lin, and C. M. Chen, “Retarding the Cu5Zn8 phase fracture at the Sn-9 wt.% Zn/Cu interface,” Scripta Materialia, Vol. 64, pp. 633-636 (2011). [37] S. C. Yang, C. E. Ho, C. W. Chang, and C.R. Kao, “Strong Zn concentration effect on the soldering reactions between Sn-based solders and Cu,” Journal of Materials Research, Vol. 21(10), pp. 2436-2349 (2006). [38] W. T. Chen, C. E. Ho, and C. R. Kao,“Effect of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders,” Journal of Materials Research, Vol. 17(2), pp. 263-266 (2002). [39] C. E. Ho, R. Y. Tsai, Y. L. Lin, and C. R. Kao, “Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni,” Journal of Electronic Materials, Vol. 31, No. 6, pp. 584-590 (2002). [40] S. P. Peng, W. H. Wu, C. E. Ho, and Y. M. Huang“Comparative study between Sn37Pb and Sn3Ag0.5Cu soldering with Au/Pd/Ni(P) tri-layer structure,” Journal of Alloys and Compounds, Vol. 493, pp. 431-437 (2010). [41] Y. W. Yen, P. H. Tsai, Y. K. Fang, S. C. Lo, Y. P. Hsieh, and C. Lee, “Interfacial reactions on Pb-free solders with Au/Pd/Ni/Cu multilayer substrates,” Journal of Alloys and Compounds, Vol. 503, pp. 25-30 (2010). [42] Y. W. Yen, P. H. Tsai, Y. K. Fang, B. J. Chen, and C. Lee,“Interfacial reactions of Pb-free solders with Au/Pd/Ni/brass multilayer substrates,” Journal of Alloys and Compounds, Vol. 517, pp. 111-117 (2012). [43] 方揚凱,「無鉛銲料與Au/Pd/Ni/Cu、Au/Pd/Ni/brass 基材之界面反應」,碩士論文,國立台灣科技大學化學工程研究所,台北 (2008)。 [44] B. Kobe and N. S. McIntyre,“Investigation of reactions between lead/tin solder and palladium surface finishes,” Acta Materialia, Vol. 50, pp. 4667-4676 (2002). [45] W. H. Wu, C. S. Lin, S. H. Huang, and C. E. Ho,“Influence of Palladium Thickness on the Soldering Reactions Between Sn-3Ag-0.5Cu and Au/Pd(P)/Ni(P) Surface Finish,” Journal of Electronic Materials, Vol. 39, No. 11, pp. 2387-2396 (2010). [46] C. E. Ho, W. H. Wu, L. H. Hsu, and C. S. Lin,“Solid-Solid Reaction Between Sn-3Ag-0.5Cu Alloy and Au/Pd(P)/Ni(P) Metallization Pad with Various Pd(P) Thicknesses,” Journal of Electronic Materials, Vol. 41, No. 1, pp. 11-21 (2011). [47] C. E. Ho, L. H. Hsu, S. W. Lin, and M. A. Rahman,“Influence of Pd Concentration on the Interfacial Reaction and Mechanical Reliability of the Ni/Sn-Ag-Cu-xPd System,” Journal of Electronic Materials, Vol. 41, No. 1, pp. 2-10 (2012). [48] C. E. Ho, S. W. Lin, and Y.C. Lin “Effects of Pd concentration on the interfacial reaction and mechanical reliability of the Sn-Pd/Ni system,” Journal of Alloys and Compounds, Vol. 509(29), pp. 7749-7757 (2011). [49] Y. M. Kim, J. Y. Park, and Y. H. Kim, “Effect of Pd Thickness on the Interfacial Reaction and Shear Strength in Solder Joints Between Sn-3.0Ag-0.5Cu Solder and Electroless Nickel/Electroless Palladium/Immersion Gold(ENEPIG) Surface Finish,” Journal of Electronic Materials, Vol. 41, No. 4, pp. 763-773 (2012). [50] X. Huang, S. W. R. Lee, C. C. Yan, and S. Hui, “Characterization and analysis on the solder ball shear testing conditions,” Proceedings 51st Electronic Components and Technology Conference, pp. 1065-1071 (2001). [51] R. J. Coyle and P. P. Solan, “The influence of test parameters and package design features on ball shear test requirements,” 26th IEEE/CPMT International Electronics Manufacturing Technology Symposium, pp. 168-177 (2000). [52] T. C. Chai, D. Q. Yu, J. Lau, W. H. Zhu, and X.R. Zhang, “Angled high strain rate shear testing for SnAgCu solder balls,” 58th Electronic Components and Technology Conference, pp. 623-628 (2008). [53] J. Y. H. Chia, B. Cotterell, and T. C. Chai, “The mechanics of the solder ball shear test and the effect of shear rate,” Materials Science & Engineering A, Vol. 417, pp. 259-274 (2006). [54] J. W. Yoon, B. I. Noh, and S. B. Jung, “Comparative study of ENIG and ENEPIG as surface finishes for a Sn-Ag-Cu solder joint,” Journal of Electronic Materials, Vol. 40, No. 9, pp. 1950-1955 (2011). [55] Test method B17:Solder ball shear, JEDEC Standard No.22B117A.
摘要: 化鎳鈀浸金(Electroless Ni/ Electroless Pd/Immersion Gold, ENEPIG)於1990年代中期便已發展,但因為當時的主流銲料為錫鉛共晶銲料,研究中發現鈀層與其相容性甚差,導致當時並不受業界所愛戴。但隨著環保意識逐漸抬頭,歐盟於2006年7月1日起正式執行RoHS法令,全面銷往歐洲的電子產品已禁止使用含鉛製品,迫使電子構裝中的銲料也開始使用無鉛銲料。此外,眾多學者開始發現使用ENEPIG的優點,諸如改善黑墊、提升打線能力及整體生產成本低等,並且國際金價近年來也持續飆升,促使ENEPIG又開始受矚目。 Sn-9Zn (in wt.%)銲料的熔點是眾多銲料中,唯一最接近SnPb共晶銲料(183°C),熔點僅僅只有198°C,並且成本低,使得Sn-9Zn銲料在無鉛銲料中十分具有優勢。此外,已有眾多的學者發現Sn-9Zn/Cu於230°C迴焊後,界面處會有一層Cu5Zn8介金屬化合物生成,但隨著歷經170°C固態熱處理,Cu5Zn8相會發生劇烈的相破裂,導致界面處形成了許多通道,使得原子間得以相互迅速擴散,促使界面的介金屬化合物形態更為凌亂。於Sn-9Zn/Cu的界面藉著導入鈀鍍層,能在迴焊過程中迅速於界面生成一層緻密的Pd2Zn9相,並且在固態熱處理的階段擔任起阻障層的角色,有效的抑制原子間的相互擴散,並且延緩Cu5Zn8相發生相破裂,維持界面的穩定,提升電子產品的可靠度。本研究中,利用沉積不同厚度的鈀鍍層,藉此觀察界面反應的差異性,鈀層厚度分別為0.2μm、0.5μm及1.0μm,並且利用錫球推力機,將其機械性質量化,作一系統性的完整比較。實驗中發現,未沉積鈀鍍層的樣品,於熱處理初期便會發生相破裂的現象;但當銅基材表面鍍上鈀表面處理層後,可以發現Pd2Zn9相延緩了Cu5Zn8相發生相破裂,並且隨著厚度越厚,延緩的效果就越好。機械性質實驗中也發現了相同的現象,因為Cu5Zn8相破裂的時間點延後,使得界面得以保持完整,有效提升界面機械強度。 最後,因為鋅原子在此界面反應中扮演了十分重要的角色,所以藉著改變銲料內的鋅含量,觀察整體界面反應的差異性。從實驗結果得知,銲料內鋅含量低時(1wt.%),界面只會單獨生成CuZn相與Cu6Sn5相;當含量增加至3 wt.%,可以發現Pd2Zn9相及Cu5Zn8相生成,但隨著反應時間增加,Pd2Zn9相逐漸轉變為PdSn4相;而當鋅含量高時(6及20 wt.%),可以發現界面反應的變化與Sn-9Zn相似。
Electroless Ni/electroless Pd/immersion Au (ENEPIG) had been developed since mid-1990s. It wasn’t extensively seen in commercial use because it was incompatible with eutectic Sn-Pb solder. “Restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)” published on July 1, 2006 by European Union was carried out due to the concern of environmental protection. Pb-containing electronic products have been prohibited so that the lead-free solders were used to replace Sn-Pb solder in electronic package. In addition, ENEPIG has many advantages such as improvement of black pad problem, enhancement of wire bonding ability, and cost decrease. Sn-9Zn (in wt.%) alloy is considered as a promising Pb-free candidate solder because its melting point (198°C) is very close to that of eutectic Sn-Pb solder (183°C) and also the cost is low. A uniform layer of the Cu5Zn8 phase is formed at the Sn-9Zn/Cu interface after reflow at 230 °C but fractures very severely during subsequent solid state aging at 170 °C. Such severe fracture of an interfacial intermetallic compound deteriorates the integrity of joint interface and leads to excessive atomic interdiffusion as well as intermetallic compound growth. By inserting an electroless palladium (Pd) layer with a various thickness (0.2, 0.5 and 1.0 μm) at the Sn-9Zn/Cu interface, a Pd2Zn9 phase is formed between Cu5Zn8 and Sn-9Zn solder. This Pd2Zn9 phase exhibits higher microstructural stability at the interface during solid state aging and effectively retards the fracture of the Cu5Zn8 phase. The integrity of the Sn-9Zn/Cu interface is improved remarkably. Mechanical tests reveal that the shear strength of the Sn-9Zn/Cu joint is enhanced by inserting an electroless Pd layer at the interface. Finally, because the Zn atoms play an important role in this interfacial reaction, we change the Zn composition in the solder to observe the differences of the overall interfacial reaction. According to the experimental results, when the Zn concentration is low (1wt.%), two intermetallic compounds, CuZn and Cu6Sn5, were formed at the interface. When the Zn concentration is increased to 3 wt.%, Pd2Zn9 and Cu5Zn8, can be found at the interface, and the Pd2Zn9 phase gradually transforms into PdSn4 phase with increasing reaction time. When the Zn concentration is high (6 and 20 wt.%), the results are similar to Sn-9Zn/Cu.
URI: http://hdl.handle.net/11455/3215
其他識別: U0005-2507201213060800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2507201213060800
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.