Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3222
標題: 改質幾丁聚醣作為藥物促滲劑及組織工程支架可行性
The Evaluation of Feasibility on Modified Chitosan as Transdermal Drug Delivery Enhancer and Tissue Engineering Scaffold
作者: 李易謙
Li, Yi-Chien
關鍵字: 幾丁聚醣
Chitosan
褐藻酸納
藥物促滲劑
支架
Alginate
Enhancer
Scaffold
出版社: 化學工程學系所
引用: [1] L.A. Aarti Naik, R.M. Pechtold, Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans, J. Controlled Release, (1995). [2] K. Vanrova, Zbytovska,J.Hrabalek, Amphiphilic Transdermal Permeation Enhancers:Structure-Activity Relationships., Curr. Med. Chem., (2005) 2273-2291. [3] M. Cotte, P. Dumas, M. Besnard, P. Tchoreloff, P. Walter, Synchrotron FT-IR microscopic study of chemical enhancers in transdermal drug delivery: example of fatty acids, Journal of controlled release : official journal of the Controlled Release Society, 97 (2004) 269-281. [4] J. A. Bouwstra,P. L. Honeywell-Nguyen, Structure of the skin barrier and its modulation by vesicular formulations, Prog. Lipid Res., (2003). [5] 施淳元, 角質層的水合作用對藥物經皮傳遞之研究, (2010). [6] K. Y., Handbook of essential pharmacokinetics, pharmacodynamics, and drug metabolism for industrial scientists, (2001). [7] A. Naik,Y. N. Kalia, Transdermal drug delivery overcoming the skin’s barrier function, (2000). [8] I.T. Degim, New tools and approaches for predicting skin permeability, Drug Discov Today, 11 (2006) 517-523. [9] P.S. Talreja, Visualization of the Lipid Barrier and Measurement of Lipid Pathlength in Human Stratum Corneum, AAPS PharmSci, (2001). [10] A.E. Benson, Transdermal Drug Delivery Penetration Enhancement Techniques, Current Drug Delivery, (2005). [11] E. Fuchs, S. Raghavan, Getting under the skin of epidermal morphogenesis, Nature reviews. Genetics, 3 (2002) 199-209. [12] T. M. Suhonen, J. A. Suhonen, Arto Urtti, Chemical enhancement of percutaneous absorption in relation to stratum corneum structural alterations, J. Controlled Release, (1999). [13] R.J. Scheuplein, Mechanism of percutaneous adsorption, The Journal of investigative dermatology, (1965). [14] A. Naik, Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans, J. Controlled Release, (1995). [15] P.A. Sartorelli, Percutaneous penetration studies for risk assessment, Environ. Toxicol. Pharmacol., (2000). [16] P.A. Sartorelli, Angerer J., Corish J., Drexler H., Goen T., Griffin P., Hotchkiss S., Larese F., Montomoli L., Percutaneous penetration studies for risk assessment, Environ. Toxicol. Pharmacol., (2000) 133-152. [17] Y.G. Anissimov, M. S. Roberts, Diffusion modeling of percutaneous absorption kinetics. 1. Effects of flow rate, receptor sampling rate, and viable epidermal resistance for a constant donor concentration, J. Pharm. Sci., (1999) 1201-1209. [18] Y.G. Anissimov, O.G. Jepps, Y. Dancik, M.S. Roberts, Mathematical and pharmacokinetic modelling of epidermal and dermal transport processes, Adv Drug Deliv Rev, (2012). [19] J.T. Kushner, D. Blankschtein, R. Langer, Evaluation of the porosity, the tortuosity, and the hindrance factor for the transdermal delivery of hydrophilic permeants in the context of the aqueous pore pathway hypothesis using dual-radiolabeled permeability experiments, J. Pharm. Sci., 96 (2007) 3263-3282. [20] E. R. Cooper, Increased skin permeability for lipophilic molecules. Journal of pharmaceutical sciences, J. Pharm. Sci., (1984) 1153-1156. [21] W.J. Pugh, Epidermal permeability–penetrant structure relationships 4,QSAR of permeant diffusion across human stratum corneum in terms of molecular weight, H-bonding and electronic charge, Int. J. Pharm., (2000). [22] M. Schaller, Interaction of liposomes with human skin the role of the stratum corneum, (1996). [23] L.L. Ferry, The comparative histology of porcine and guinea pig skin with respect to iontophoretic drug delivery, Pharmaceutics Acta Helvetiae, (1995). [24] L. Ilic, Spatially constrained skin electroporation with sodium thiosulfate and urea creates transdermal microconduits, J. Controlled Release, (1999). [25] H. Ueda, Change in the electrochemical properties of skin and the lipid packing in stratum corneum by ultrasonic irradiation, Int. J. Pharm., (1996). [26] S. Lee, Photomechanical Transdermal DeliveryThe Effect of Laser Cofinement, Lasers Surg. Med., (2001). [27] D.V. McAllister, P. M. Wang,S. P. Davis, Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies, Proc. Natl. Acad. Sci. U. S. A., (2003). [28] E.W. Harrison, A. C. Green, The relative effect of AzoneR and TranscutolR on permeant diffusivity and solubility in human stratum corneum, Pharm. Res., (1996) 542-546. [29] P. Karande, S. Mitragotri, Enhancement of transdermal drug delivery via synergistic action of chemicals, Biochim. Biophys. Acta, 1788 (2009) 2362-2373. [30] T.M. Suhonena, Chemical enhancement of percutaneous absorption in relation to stratum corneum structural alterations, J. Controlled Release, (1999). [31] J. Hadgraft, Passive enhancement strategies in topical and transdermal drug delivery, Int. J. Pharm., (1999). [32] A. Manosroi, L. Kongkaneramit, J. Manosroi, Stability and transdermal absorption of topical amphotericin B liposome formulations, Int. J. Pharm., 270 (2004) 279-286. [33] M.K. Schaller, H., Interaction of liposomes with human skin: the role of the stratum corneum, Advanced drug delivery reviews, (1996) 303-309. [34] K. Kurita, Controlled functionalization of the polysaccharide chitin, (2001). [35] Majeti N.V. Ravi Kumar, A review of chitin and chitosan applications, Reactive & Functional Polymers, (2000). [36] E. Khor, L.Y. Lim, Implantable applications of chitin and chitosan, Biomaterials, 24 (2003) 2339-2349. [37] A. K. Singla,M. Chawla, Chitosan some pharmaceutical and biological aspects – an update, J. Pharm. Pharmacol., (2001). [38] 王譽賓, Alginate-chitosan scaffolds containing FGF1 and nanoparticles for skin tissue engineering, (2006). [39] Z. Li, H.R. Ramay, K.D. Hauch, D. Xiao, M. Zhang, Chitosan-alginate hybrid scaffolds for bone tissue engineering, Biomaterials, 26 (2005) 3919-3928. [40] S. B. Rao,C.P. Sharma, Use of chitosan as a biomaterial Studies on its safety and hemostatic potential, J. Biomed. Mater. Res., (1997). [41] F.S. Franqois Berthod, Dany Hayek, Odile Damour,Christian Collombel, Deposition of collagen fibril bundles by long-term culture of fibroblasts in a collagen sponge, Journal of Biomedical Materials Research,, (1996). [42] Y.C. Chung, C.Y. Chen, Antibacterial characteristics and activity of acid-soluble chitosan, Bioresour Technol, 99 (2008) 2806-2814. [43] O. Wichterle,D. Lim, Hydrophilic gels for biological use, Nature, (1997) 117-118. [44] D. L. Nettles, S. H. Elder, J. A. Gilbert, Potential Use of Chitosan as a Cell Scaffold Material for Cartilage Tissue Engineering, Tissue Eng., 8 (2002). [45] A.P. Carmen Remun˜a’n-Lo’pez, Jose’ Luis Vila-Jato, Mar’ıa Jose’ Alonso, Design and evaluation of chitosan ethylcellulose mucoadhesive bilayered devices for buccal drug delivery, J. Controlled Release, (1998). [46] B.G. Muzzarelli, Immobilized enzymes on chitosan columns:alpha-chymotrypsin and acid phosphatase, Biotechnol. Bioeng., (1976) 1445-1454. [47] M.N. Khalid, F. Agnely, N. Yagoubi, Water state characterization, swelling behavior, thermal and mechanical properties of chitosan based networks, Eur. J. Pharm. Sci., (2002). [48] J. Berger, M. Reist, J.M. Mayer, O. Felt, R. Gurny, Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications, Eur. J. Pharm. Biopharm., 57 (2004) 35-52. [49] A. Thomas, K. G. Harding, K. Moore, Alginates from wound dressings activate human macrophages to secrete tumour necrosis factor-a, Biomaterials, (2000). [50] R.J. Schmidt, L. Y. Chung, Biocompatibility of wound management products:a study of the effects of various polysaccharides in muring L929 fibroblast proliferation and macrophage respiratory burst, J. Pharm. Pharmacol., (1993). [51] C. W, Alginate dental impression material:chemistry,structure and properties, J. Biomed. Mater. Res., (1986) 1-24. [52] M.J. Ferna’ndez-Herva’s, M. A. Holgado, In vitro evaluation of alginate beads of a diclofenac salt, Int. J. Pharm., (1998). [53] Willem J.C.M. Marijnissen, J. Aigner, Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering, Biomaterials, (2002). [54] G.M. King, Brown seaweed extracts (alginates).In Food Hydrocolloids, CRC Press Inc, (1983) 115-182. [55] H.S. Choi, Study on gelatin-base sponges.Part :A comparative study of cross-linked gelatin/alginate,gelatin/hyaluronate and chitosan/hyaluronate sponges and their application as wound dressing in full-thickness skin defect of rat, J Materials Science, (2001) 67-73. [56] W.R. Clear, Polysaccharides and their derivaties.,Academic Press, Academic Press.Inc, (1993) 105-143. [57] J. R. Mitchell, Polysaccharides in food, Food Techonol, (1981) 50-57. [58] 邱欣洋, 幾丁聚醣與褐藻酸納其交聯物製成之多孔性支架緩慢釋放己酮可可鹼之抗發炎效果, (2009). [59] M.K. Akihiko Kikuchi, Pulsed dextran release from calcium-alginate gel beads, J. Controlled Release, (1997). [60] Y. Zhang, M. Zhang, Microstructural and mechanical characterization of chitosan scaffolds reinforced by calcium phosphates, J. Non-Cryst. Solids, (2001). [61] W.C. Hsieh, C.P. Chang, S.M. Lin, Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering, Colloids and surfaces. B, Biointerfaces, 57 (2007) 250-255. [62] L. Wang, E. Khor, A. Wee, L.Y. Lim, Chitosan-alginate PEC membrane as a wound dressing: Assessment of incisional wound healing, J. Biomed. Mater. Res., 63 (2002) 610-618. [63] H. Chen, W. Ouyang, B. Lawuyi, Genipin Cross-Linked Alginate-Chitosan Microcapsules Membrane Characterization and Optimization of Cross-Linking Reaction, Biomacromolecules, (2006). [64] Y. Zhang, M. Zhang, Microstructural and mechanical characterization of chitosan scaffolds reinforced by calcium phosphates, J. Non-Cryst. Solids, (2001) 159-164. [65] 黃彥凌, 兩性幾丁聚醣凝膠作為維他命C磷酸鎂鹽經皮傳輸載體之評估, (2007). [66] W.E. Hennink, C.F. van Nostrum, Novel crosslinking methods to design hydrogels, Advanced Drug Delivery Reviews, (2002). [67] J.J. Sperinde, B.D. Martens, Tresyl-mediated synthesis:kinetic of competing coupling and hydrolysis reaction as a function of pH,temperature,and steric factor, Bioconjugate Chem., (1999) 213-220. [68] S.P. Drobnik J, Wichterle O., Diffusion of anti-tumor drugs through menbranes form hydrophilic methacrylate gels, J. Biomed. Mater. Res., (1974) 45-51. [69] D.L. Elbert, Protein delivery from materials formed by self-selective conjugate addition reactions, J. Controlled Release, (2001). [70] A.J. Kuijpers, J. Krijgsveld, Cross-linking and characterization of gelatin matrices for biomedical application, Journal of biomaterials science.Polymer edition, (2000) 225-243. [71] R. Jayakumar, M. Prabaharan, R.L. Reis, J.F. Mano, Graft copolymerized chitosan—present status and applications, Carbohydr. Polym., 62 (2005) 142-158. [72] A.N. Miuata T., Uragami T., Preparation of an antigen-sensitive hydrogel using antigen-antibody bingings, Macromolecules, (1999) 2082-2084. [73] L. Noble, A. I. Gray, A non-covalently cross-linked chitosan based hydrogel, Int. J. Pharm., (1999). [74] L. Martin, Sustained buccal delivery of the hydrophobic drug denbufylline using physically cross-linked palmitoyl glycol chitosan hydrogels, Eur. J. Pharm. Biopharm., 55 (2003) 35-45. [75] T. Cerchiara, B. Luppi, F. Bigucci, I. Orienti, V. Zecchi, Physically cross-linked chitosan hydrogels as topical vehicles for hydrophilic drugs, J. Pharm. Pharmacol., 54 (2002) 1453-1459. [76] Riccardo A.A. Muzzarelli, Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone, Carbohydr. Polym., 76 (2009) 167-182. [77] K. Kofuji, H. Akamine, C.J. Qian, K. Watanabe, Y. Togan, M. Nishimura, I. Sugiyama, Y. Murata, S. Kawashima, Therapeutic efficacy of sustained drug release from chitosan gel on local inflammation, Int. J. Pharm., 272 (2004) 65-78. [78] L. Tang, J. W. Eaton, Fibrin(ogen)mediates acute inflammatory responses to biomaterials, The Journal of Experimental medicine, (1993) 2147-2156. [79] B.Y. Ong, S.H. Ranganath, L.Y. Lee, F. Lu, H.S. Lee, N.V. Sahinidis, C.H. Wang, Paclitaxel delivery from PLGA foams for controlled release in post-surgical chemotherapy against glioblastoma multiforme, Biomaterials, 30 (2009) 3189-3196. [80] B. Pittsburgh,Tissue Engineering Initiative, Bioactive molecule-based. [81] B. Lynch, Toxicology Review and Risk Assessment of Resorcinol: Thyroid Effects, Regul. Toxicol. Pharm., 36 (2002) 198-210. [82] S. Mitragotri, Temperature dependence of skin permeability to hydrophilic and hydrophobic solutes, J. Pharm. Sci., 96 (2007) 1832-1839. [83] W.J. Pugh, J. Hadgraft, Jonathan Hadgraft Skin permeability data anomalous results, Int. J. Pharm., (1998). [84] D.A. Godwin, Synthesis and investigation of urea compounds as transdermal penetration enhancers, Int. J. Pharm., (1998). [85] W. Chin, W. Kroontje, Conductivity Method for Determination of Urea, Apparatus and Reagents., (1961). [86] D.K. Skoog, Principles of instrumental analysis(4th Edition), (1992). [87] L. H. Wang,Y. P. Kuo, Simultaneous Quantitative Determination of Resorcinol and 1-Naphthol in Haircolor Products by High-Performance Liquid Chromatography, Chromatographia, 49 (1999) 208-211. [88] G. Lawrie, Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS, Biomacromolecules, (2007). [89] B. Smitha, S. Sridhar, A.A. Khan, Chitosan–poly(vinyl pyrrolidone) blends as membranes for direct methanol fuel cell applications, J. Power Sources, 159 (2006) 846-854. [90] S.K. Bajpai, S. Sharma, Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions, React. Funct. Polym., 59 (2004) 129-140. [91] P. Sriamornsak, N. Thirawong, K. Korkerd, Swelling, erosion and release behavior of alginate-based matrix tablets, Eur. J. Pharm. Biopharm., 66 (2007) 435-450. [92] G. B. Jiang,D. Quan, K. Liao, Novel Polymer Micelles Prepared from Chitosan Grafted Hydrophobic Palmitoyl Groups for Drug Delivery, MOLECULAR PHARMACEUTICS, 3, (2005) 152-160. [93] F. Shen,Y. L. Cui,L. F. Yang, A study on the fabrication of porous chitosan/gelatin network scaffold for tissue engineering, Polym. Int., (2000). [94] T. W. Chung, J. Yang, T. Akaike, Preparation of alginate galactosylatedchitosan scaffold for hepatocyte attachment, Biomaterials, (2002). [95] C. J. Doillon, C. F. Whyne, Collagen-based wound dressings: Control of the pore structure and morphology, J. Biomed. Mater. Res., (1986). [96] J.F. N. Dagalakis, P. Stasikelis, J. F. Burke, and I. V. Yannas, Design of an artificial skin. Part 111. Control of pore structure, J. Biomed. Mater. Res., 14 (1980) 511-528. [97] S. V. Madihally, Porous chitosan scaffolds for tissue engineering, Biomaterials, (1999) 1133-1142. [98] J. Zhang, L. Wu, D. Jing, J. Ding, A comparative study of porous scaffolds with cubic and spherical macropores, Polymer, 46 (2005) 4979-4985. [99] A.A. Elzatahry, M.S.M. Eldin, E.A. Soliman, E.A. Hassan, Evaluation of alginate-chitosan bioadhesive beads as a drug delivery system for the controlled release of theophylline, J. Appl. Polym. Sci., 111 (2009) 2452-2459. [100] M.R. de Moura, M.R. Guilherme, G.M. Campese, E. Radovanovic, A.F. Rubira, E.C. Muniz, Porous alginate-Ca2+ hydrogels interpenetrated with PNIPAAm networks: Interrelationship between compressive stress and pore morphology, Eur. Polym. J., 41 (2005) 2845-2852. [101] 陳播暉, 幾丁聚醣/果膠複合材料之製備與特性探討, (2004). [102] D.H. Artur Bartkowiak, Alginate-Oligochitosan Microcapsules. II. Control of Mechanical Resistance and Permeability of the Membrane, 2000 American Chemical Society, (2000). [103] T.W. Chen, S.J. Chang, G.C.-C. Niu, Y.T. Hsu, S.M. Kuo, Alginate-coated chitosan membrane for guided tissue regeneration, J. Appl. Polym. Sci., 102 (2006) 4528-4534. [104] T. W. Chung, J. Yang, T. Akaike, Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment, Biomaterials, (2002). [105] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, 26 (2005) 5474-5491. [106] V. Chiono, E. Pulieri, G. Vozzi, G. Ciardelli, A. Ahluwalia, P. Giusti, Genipin-crosslinked chitosan/gelatin blends for biomedical applications, Journal of materials science. Materials in medicine, 19 (2008) 889-898. [107] N. Shanmugasundaram, P. Ravichandran, Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells, Biomaterials, (2001). [108] R.S. Tigli, M. Gumusderelioglu, Evaluation of alginate-chitosan semi IPNs as cartilage scaffolds, Journal of materials science. Materials in medicine, 20 (2009) 699-709. [109] Riccardo A.A. Muzzarelli, Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids, Carbohydr. Polym., 77 (2009) 1-9. [110] U.J. Kim, J. Park, H.J. Kim, M. Wada, D.L. Kaplan, Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin, Biomaterials, 26 (2005) 2775-2785. [111] G. Pasparakis, N. Bouropoulos, Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate-chitosan beads, Int. J. Pharm., 323 (2006) 34-42. [112] K. Gupta, F. Jabrail, Effects of degree of deacetylation and cross-linking on physical characteristics, swelling and release behavior of chitosan microspheres, Carbohydr. Polym., 66 (2006) 43-54. [113] F. L. Mi, H. W. Sung, S. S. Shyu, Release of Indomethacin from a Novel Chitosan Microsphere Prepared by a Naturally Occurring Crosslinker: Examination of Crosslinking and Polycation–Anionic Drug Interaction, J. Appl. Polym. Sci., 81 (2001) 1700-1711. [114] H. W. Kim, J.C. Knowles, H.E. Kim, Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery, Biomaterials, 25 (2004) 1279-1287. [115] V. Merino, Y. N. Kalia, Transdermaltherapy and diagnosis by iontophoresis, 15 (1997) 288-290. [116] S.F. Taveira, A. Nomizo, R.F. Lopez, Effect of the iontophoresis of a chitosan gel on doxorubicin skin penetration and cytotoxicity, Journal of controlled release : official journal of the Controlled Release Society, 134 (2009) 35-40. [117] W. He, X. Guo, M. Zhang, Transdermal permeation enhancement of N-trimethyl chitosan for testosterone, Int. J. Pharm., 356 (2008) 82-87. [118] W.M. Kuhtreiber, Cell encapsulation technology and therapeutics., (1999). [119] H.Y. Zhou, X.G. Chen, M. Kong, C.S. Liu, D.S. Cha, J.F. Kennedy, Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system, Carbohydr. Polym., 73 (2008) 265-273. [120] W.W. Thein-Han, R.D.K. Misra, Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering, Acta biomaterialia, 5 (2009) 1182-1197.
摘要: 皮膚的角質層是藥物經皮傳輸系統發展中最主要的障礙,因此需要改進藥品的物化特性,藉以擾動角質層結構來增進藥物穿透效率。幾丁聚醣是一種經過去乙醯化的多醣體,其前驅物幾丁質是自然界中含量第二多的高分子。它具有良好的生物相容性、生物降解性及非抗原性,有利於醫療和製藥的應用。 本研究利用褐藻酸鈉與兩性幾丁聚醣交聯的水凝膠應用在藥物促滲劑和組織工程。實驗利用FT-IR和1H NMR確認其化學特性,其中冷凍乾燥的交聯支架利用SEM和拉力測試評估其應用在組織工程的可能性。根據SEM結果顯示,孔洞直徑約100~250 μm。 幾丁聚醣利用疏水性官能基 - 月桂酸和棕櫚酸完成架接,並評估此凝膠當做親水性藥物 - 間-苯二酚載體的經皮滲透效果。在體外經皮滲透實驗,利用垂直式經皮滲透儀進行監測並利用數學模型得知有效滲透係數。實驗配方分別為不加入幾丁聚醣的溶液為控制組,加入N-palmitoyl chitosan (PNC), N-lauryl chitosan (LNC), N-palmitoyl chitosan- alginate (PNC-A), N-lauryl chitosan- alginate (LNC-A)為比較組。根據結果,LNC具有當作藥物經皮滲透載體的潛力。
Being the major contributor of permeation resistance of transdermal drug delivery system(TDDS),stratum corneum (SC) has been the focus of TDDS research aiming at improving the efficiency of drug permeation through skin. One of the approaches toward that is to modify the physicochemical properties of the drug and thus alter the interaction between drug molecules and SC. Chitosan has received interest for medical and pharmaceutical applications due to its intrinsic properties including biocompatibility, biodegradability and non-antigenicity. In this work hydrogel solutions composed of cross-linked amphiphilic chitosan and alginate porous scaffold were prepared for the in vitro permeation experiments and tissue engineering. Experiments performed on the crosslinked scaffolds that physical properties were examined by SEM,and Tensile test(Young’s modulus),as well as its chemical identity was determined by FT-IR and confirmed by 1H NMR. The morphology results showed the pore size ranged from 100 to 250 μm. The purpose of this study is to evaluate the transdermal permeation enhancement of the modification of the water-soluble chitosan with pendant hydrophobic groups to achieve non-covalent cross-linking with fatty acid, and as well evaluate the potential of the amphiphilic hydrogels as topical delivery carrier for the hydrophilic model compound Resorcinol (Re). Results were analyzed with a numerical model to produce quantitative indexes for the evaluation of transdermal drug delivery efficiency. A family of chitosan derivatives including N-palmitoyl chitosan (PNC), N-lauryl chitosan (LNC), N-palmitoyl chitosan- alginate (PNC-A), N-lauryl chitosan- alginate (LNC-A) were employed as permeation enhancers. The results suggested LNC was a significant enhancer for transdermal permeation of Re.
URI: http://hdl.handle.net/11455/3222
其他識別: U0005-0208201223252900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0208201223252900
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.