Please use this identifier to cite or link to this item:
標題: 氮化鎵/二氧化鈦奈米複合材料薄膜作為染料敏化太陽能電池之探討
Dye-sensitized solar cells based on gallium nitride/titanium dioxide nanocomposite photoelectrodes
作者: 黃尹柔
Yin, Rou-Huang
關鍵字: 染料敏化太陽能電池
Dye-sensitized solar cells
gallium nitride
出版社: 化學工程學系所
引用: 1. Gloaguen F, Leger JM, Lamy C: Electrocatalytic oxidation of methanol on platinum nanoparticles electrodeposited onto porous carbon substrates. Journal of Applied Electrochemistry 1997, 27(9):1052-1060. 2. 楊鈺貞: 利用溶膠-凝膠法改善二氧化鈦薄膜工作電極應用於染料敏化太陽能電池. 桃園縣: 長庚大學; 2010. 3. Gratzel M: Photoelectrochemical cells. Nature 2001, 414(6861):338-344. 4. Gratzel M: Powering the planet. Nature 2000, 403:363. 5. Oregan B, Gratzel M: A LOW-COST, HIGH-EFFICIENCY SOLAR-CELL BASED ON DYE-SENSITIZED COLLOIDAL TIO2 FILMS. Nature 1991, 353(6346):737-740. 6. 楊素華、蔡泰成: 太陽光能發電元件──太陽能電池. In: 科學發展. vol. 390; 2005. 7. Tyagi VV, Rahim NAA, Rahim NA, Selvaraj JAL: Progress in solar PV technology: Research and achievement. Renewable and Sustainable Energy Reviews 2013, 20(0):443-461. 8. Chaure NB, Young J, Samantilleke AP, Dharmadasa IM: Electrodeposition of p–i–n type CuInSe2 multilayers for photovoltaic applications. Solar Energy Materials and Solar Cells 2004, 81(1):125-133. 9. Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, Macdiarmid AG: ELECTRICAL-CONDUCTIVITY IN DOPED POLYACETYLENE. Physical Review Letters 1977, 39(17):1098-1101. 10. Braun D, Heeger AJ, Kroemer H: IMPROVED EFFICIENCY IN SEMICONDUCTING POLYMER LIGHT-EMITTING-DIODES. Journal of Electronic Materials 1991, 20(11):945-948. 11. Braun D, Heeger AJ: VISIBLE-LIGHT EMISSION FROM SEMICONDUCTING POLYMER DIODES. Applied Physics Letters 1991, 58(18):1982-1984. 12. Narayan KS, Singh TB: Nanocrystalline titanium dioxide-dispersed semiconducting polymer photodetectors. Applied Physics Letters 1999, 74(23):3456-3458. 13. Savenije TJ, Warman JM, Goossens A: Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer. Chem Phys Lett 1998, 287(1-2):148-153. 14. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ: POLYMER PHOTOVOLTAIC CELLS - ENHANCED EFFICIENCIES VIA A NETWORK OF INTERNAL DONOR-ACCEPTOR HETEROJUNCTIONS. Science 1995, 270(5243):1789-1791. 15. Fromherz T, Padinger F, Gebeyehu D, Brabec C, Hummelen JC, Sariciftci NS: Comparison of photovoltaic devices containing various blends of polymer and fullerene derivatives. Solar Energy Materials and Solar Cells 2000, 63(1):61-68. 16. Eckert JF, Nicoud JF, Nierengarten JF, Liu SG, Echegoyen L, Barigelletti F, Armaroli N, Ouali L, Krasnikov V, Hadziioannou G: Fullerene-oligophenylenevinylene hybrids: Synthesis, electronic properties, and incorporation in photovoltaic devices. Journal of the American Chemical Society 2000, 122(31):7467-7479. 17. Nazeeruddin MK, Pechy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V et al: Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Journal of the American Chemical Society 2001, 123(8):1613-1624. 18. Green MA, Emery K, Hishikawa Y, Warta W: Solar cell efficiency tables (version 31). Prog Photovoltaics 2008, 16(1):61-67. 19. 呂怡萱: 二氧化鈦奈米管於染料敏化太陽能電池之探討. 桃園縣: 國立中央大學; 2006. 20. Oster G, Bellin JS, Kimball RW, Schrader ME: Dye Sensitized Photooxidation1. Journal of the American Chemical Society 1959, 81(19):5095-5099. 21. Ramasamy E, Lee WJ, Lee DY, Song JS: Spray coated multi-wall carbon nanotube counter electrode for tri-iodide reduction in dye-sensitized solar cells. Electrochemistry Communications 2008, 10(7):1087-1089. 22. Vinodgopal K, Kamat PV: ENVIRONMENTAL PHOTOCHEMISTRY ON SURFACES - CHARGE INJECTION FROM EXCITED FULVIC-ACID INTO SEMICONDUCTOR COLLOIDS. Environ Sci Technol 1992, 26(10):1963-1966. 23. Hotchandani S, Kamat PV: Modification of electrode surface with semiconductor colloids and its sensitization with chlorophyll a. Chem Phys Lett 1992, 191(3–4):320-326. 24. Shiyanovskaya I, Hepel M: Decrease of recombination losses in bicomponent WO3/TiO2 films photosensitized with cresyl violet and thionine. J Electrochem Soc 1998, 145(11):3981-3985. 25. Keis K, Magnusson E, Lindstrom H, Lindquist S-E, Hagfeldt A: A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes. Solar Energy Materials and Solar Cells 2002, 73(1):51-58. 26. Gratzel M: Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 2004, 164(1–3):3-14. 27. Diebold U: The surface science of titanium dioxide. Surface Science Reports 2003, 48(5–8):53-229. 28. 簡國明, 洪長春, 吳典熹, 王永銘, 藍怡平: 奈米二氧化鈦專利地圖及分析: 行政院國家科學委員會科學技術資料中心; 2003. 29. Fox MA, Dulay MT: HETEROGENEOUS PHOTOCATALYSIS. Chem Rev 1993, 93(1):341-357. 30. Linsebigler AL, Lu GQ, Yates JT: PHOTOCATALYSIS ON TIO2 SURFACES - PRINCIPLES, MECHANISMS, AND SELECTED RESULTS. Chem Rev 1995, 95(3):735-758. 31. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW: ENVIRONMENTAL APPLICATIONS OF SEMICONDUCTOR PHOTOCATALYSIS. Chem Rev 1995, 95(1):69-96. 32. Serp P, Kalck P, Feurer R: Chemical vapor deposition methods for the controlled preparation of supported catalytic materials. Chem Rev 2002, 102(9):3085-3128. 33. Iuchi K-i, Ohko Y, Tatsuma T, Fujishima A: Cathode-Separated TiO2 Photocatalysts Applicable to a Photochromic Device Responsive to Backside Illumination. Chem Mat 2004, 16(7):1165-1167. 34. Ohko Y, Hashimoto K, Fujishima A: Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films. J Phys Chem A 1997, 101(43):8057-8062. 35. Anderson C, Bard AJ: An Improved Photocatalyst of TiO2/SiO2 Prepared by a Sol-Gel Synthesis. The Journal of Physical Chemistry 1995, 99(24):9882-9885. 36. Chan AHC, Chan CK, Barford JP, Porter JF: Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater. Water Research 2003, 37(5):1125-1135. 37. Cho M, Chung H, Choi W, Yoon J: Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Research 2004, 38(4):1069-1077. 38. Horikoshi S, Hidaka H, Serpone N: Environmental remediation by an integrated microwave/UV-illumination method. 1. Microwave-assisted degradation of rhodamine-B dye in aqueous TiO2 dispersions. Environ Sci Technol 2002, 36(6):1357-1366. 39. Sun QY, Jiang YJ, Jiang ZY, Zhang L, Sun XH, Li J: Green and Efficient Conversion of CO2 to Methanol by Biomimetic Coimmobilization of Three Dehydrogenases in Protamine-Templated Titania. Ind Eng Chem Res 2009, 48(9):4210-4215. 40. Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Gratzel M: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 1998, 395(6702):583-585. 41. Papageorgiou N, Maier WF, Gratzel M: An iodine/triiodide reduction electrocatalyst for aqueous and organic media. J Electrochem Soc 1997, 144(3):876-884. 42. Kay A, Gratzel M: Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells 1996, 44(1):99-117. 43. Saito Y, Kubo W, Kitamura T, Wada Y, Yanagida S: I−/I3− redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 2004, 164(1–3):153-157. 44. Lee KM, Hsu CY, Chen PY, Ikegami M, Miyasaka T, Ho KC: Highly porous PProDOT-Et-2 film as counter electrode for plastic dye-sensitized solar cells. Phys Chem Chem Phys 2009, 11(18):3375-3379. 45. 馬振基, 張正華, 李陵嵐, 葉楚平, 楊平華: 有機與塑膠太陽能電池. 台北市: 五南; 2007. 46. Argazzi R, Bignozzi CA, Heimer TA, Castellano FN, Meyer GJ: ENHANCED SPECTRAL SENSITIVITY FROM RUTHENIUM(II) POLYPYRIDYL BASED PHOTOVOLTAIC DEVICES. Inorg Chem 1994, 33(25):5741-5749. 47. Finnie KS, Bartlett JR, Woolfrey JL: Vibrational spectroscopic study of the coordination of (2,2 ''-bipyridyl-4,4 ''-dicarboxylic acid)ruthenium(II) complexes to the surface of nanocrystalline titania. Langmuir 1998, 14(10):2744-2749. 48. Nazeeruddin MK, Amirnasr M, Comte P, Mackay JR, McQuillan AJ, Houriet R, Gratzel M: Adsorption studies of counterions carried by the sensitizer cis-dithiocyanato(2,2 ''-bipyridyl-4,4 ''-dicarboxylate) ruthenium(II) on nanocrystaline TiO2 films. Langmuir 2000, 16(22):8525-8528. 49. Murakoshi K, Kano G, Wada Y, Yanagida S, Miyazaki H, Matsumoto M, Murasawa S: Importance of binding states between photosensitizing molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell. Journal of Electroanalytical Chemistry 1995, 396(1–2):27-34. 50. Sayama K, Sugihara H, Arakawa H: Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chem Mat 1998, 10(12):3825-3832. 51. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Graetzel M: Conversion of light to electricity by cis-X2bis(2,2''-bipyridyl-4,4''-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society 1993, 115(14):6382-6390. 52. Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Gratzel M: Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society 2005, 127(48):16835-16847. 53. Pechy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L et al: Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society 2001, 123(8):1613-1624. 54. Klein C, Nazeeruddin K, Di Censo D, Liska P, Gratzel M: Amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cells. Inorg Chem 2004, 43(14):4216-4226. 55. Wolfbauer G, Bond AM, Eklund JC, MacFarlane DR: A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells. Solar Energy Materials and Solar Cells 2001, 70(1):85-101. 56. Liu Y, Hagfeldt A, Xiao X-R, Lindquist S-E: Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell. Solar Energy Materials and Solar Cells 1998, 55(3):267-281. 57. Hara K, Horiguchi T, Kinoshita T, Sayama K, Arakawa H: Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells. Solar Energy Materials and Solar Cells 2001, 70(2):151-161. 58. Zhu R, Jiang CY, Liu B, Ramakrishna S: Highly Efficient Nanoporous TiO2-Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metal-Free Organic Dye. Advanced Materials 2009, 21(9):994-+. 59. Tsubomura H, Matsumura M, Nomura Y, Amamiya T: DYE SENSITIZED ZINC-OXIDE - AQUEOUS-ELECTROLYTE - PLATINUM PHOTOCELL. Nature 1976, 261(5559):402-403. 60. Hara K, Sayama K, Ohga Y, Shinpo A, Suga S, Arakawa H: A coumarin-derivative dye sensitized nanocrystalline TiO solar cell having a high solar-energy conversion efficiency up to 5.6%. Chem Commun 2001, 0(6):569-570. 61. Wang P, Zakeeruddin SM, Moser J-E, Gratzel M: A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B 2003, 107(48):13280-13285. 62. Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Bessho T, Gratzel M: Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society 2005, 127(48):16835-16847. 63. Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han LY: Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn J Appl Phys Part 2 - Lett Express Lett 2006, 45(24-28):L638-L640. 64. TiO2奈米多孔性薄膜於染料敏化太陽能電池(dye-sensitized solar cell, DSSC)之應用 [] 65. Fang X, Ma T, Guan G, Akiyama M, Kida T, Abe E: Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell. Journal of Electroanalytical Chemistry 2004, 570(2):257-263. 66. Li P, Wu J, Lin J, Huang M, Huang Y, Li Q: High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells. Solar Energy 2009, 83(6):845-849. 67. Mathew A, Rao GM, Munichandraiah N: Dye sensitized solar cell based on platinum decorated multiwall carbon nanotubes as catalytic layer on the counter electrode. Materials Research Bulletin 2011, 46(11):2045-2049. 68. Huang K-C, Wang Y-C, Chen P-Y, Lai Y-H, Huang J-H, Chen Y-H, Dong R-X, Chu C-W, Lin J-J, Ho K-C: High performance dye-sensitized solar cells based on platinum nanoparticle/multi-wall carbon nanotube counter electrodes: The role of annealing. Journal of Power Sources 2012, 203(0):274-281. 69. Uk Lee S, Seok Choi W, Hong B: A comparative study of dye-sensitized solar cells added carbon nanotubes to electrolyte and counter electrodes. Solar Energy Materials and Solar Cells 2010, 94(4):680-685. 70. Xiao Y, Wu J, Yue G, Lin J, Huang M, Lan Z: Low temperature preparation of a high performance Pt/SWCNT counter electrode for flexible dye-sensitized solar cells. Electrochimica Acta 2011, 56(24):8545-8550. 71. Measurement of DNA oxidation in human cells by chromatographic and enzymic methods. Free Radical Biology and Medicine 2003, 34(8):1089-1099. 72. Tennakone K, Kumara G, Kottegoda IRM, Perera VPS: An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chem Commun 1999(1):15-16. 73. Kim S-S, Yum J-H, Sung Y-E: Improved performance of a dye-sensitized solar cell using a TiO2/ZnO/Eosin Y electrode. Solar Energy Materials and Solar Cells 2003, 79(4):495-505. 74. Park K-h, Jin E-m, Gu H-b, Yoon S-d, Han E-m, Yun J-j: 204% enhanced efficiency of ZrO2 nanofibers doped dye-sensitized solar cells. Applied Physics Letters 2010, 97(2). 75. Kongkanand A, Dominguez RM, Kamat PV: Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Letters 2007, 7(3):676-680. 76. Kongkanand A, Kamat PV: Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor-SWCNT suspensions. Acs Nano 2007, 1(1):13-21. 77. Lee K-M, Hu C-W, Chen H-W, Ho K-C: Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells. Solar Energy Materials and Solar Cells 2008, 92(12):1628-1633. 78. Yen CY, Lin YF, Liao SH, Weng CC, Huang CC, Hsiao YH, Ma CCM, Chang MC, Shao H, Tsai MC et al: Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells. Nanotechnology 2008, 19(37). 79. Yang N, Zhai J, Wang D, Chen Y, Jiang L: Two-Dimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar Cells. Acs Nano 2010, 4(2):887-894. 80. Yen M-Y, Hsiao M-C, Liao S-H, Liu P-I, Tsai H-M, Ma C-CM, Pu N-W, Ger M-D: Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells. Carbon 2011, 49(11):3597-3606. 81. Rice University: Rick Smalley’s Group Home Page-Image Gallery. [] 82. Polymer/Carbon Nanotube Nanocomposites [] 83. Terrones M, Hsu WK, Kroto HW, Walton DRM: Nanotubes: A revolution in materials science and electronics. In: Fullerenes and Related Structures. Edited by Hirsch A, vol. 199; 1999: 189-234. 84. Osman MA, Srivastava D: Temperature dependence of the thermal conductivity of single-wall carbon nanotubes. Nanotechnology 2001, 12(1):21-24. 85. Carbon Nanotubes & Buckyballs [] 86. Wildoer JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C: Electronic structure of atomically resolved carbon nanotubes. Nature 1998, 391(6662):59-62. 87. Fischer JE: Chemical doping of single-wall carbon nanotubes. Accounts Chem Res 2002, 35(12):1079-1086. 88. Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP, Washburn S, Superfine R: Bending and buckling of carbon nanotubes under large strain. Nature 1997, 389(6651):582-584. 89. Treacy MMJ, Ebbesen TW, Gibson JM: Exceptionally high Young''s modulus observed for individual carbon nanotubes. Nature 1996, 381(6584):678-680. 90. Wong EW, Sheehan PE, Lieber CM: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277(5334):1971-1975. 91. Pederson MR, Broughton JQ: NANOCAPILLARITY IN FULLERENE TUBULES. Physical Review Letters 1992, 69(18):2689-2692. 92. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ: Storage of hydrogen in single-walled carbon nanotubes. Nature 1997, 386(6623):377-379. 93. Hirsch A: Functionalization of single-walled carbon nanotubes. Angew Chem-Int Edit 2002, 41(11):1853-1859. 94. Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB et al: Fullerene pipes. Science 1998, 280(5367):1253-1256. 95. Kuznetsova A, Popova I, Yates JT, Bronikowski MJ, Huffman CB, Liu J, Smalley RE, Hwu HH, Chen JGG: Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. Journal of the American Chemical Society 2001, 123(43):10699-10704. 96. Kuznetsova A, Mawhinney DB, Naumenko V, Yates Jr JT, Liu J, Smalley RE: Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports. Chem Phys Lett 2000, 321(3–4):292-296. 97. O''Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C et al: Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297(5581):593-596. 98. O''Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE: Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 2001, 342(3–4):265-271. 99. Zhu J, Yudasaka M, Zhang M, Iijima S: Dispersing Carbon Nanotubes in Water:  A Noncovalent and Nonorganic Way. The Journal of Physical Chemistry B 2004, 108(31):11317-11320. 100. Tsai Y-C, Chiu C-C, Tsai M-C, Wu J-Y, Tseng T-F, Wu T-M, Hsu S-F: Dispersion of carbon nanotubes in low pH aqueous solutions by means of alumina-coated silica nanoparticles. Carbon 2007, 45(14):2823-2827. 101. Adinugraha MP, Marseno DW, Haryadi: Synthesis and characterization of sodium carboxymethylcellulose from cavendish banana pseudo stem (Musa cavendishii LAMBERT). Carbohydrate Polymers 2005, 62(2):164-169. 102. Liu J, Zhang Q, Huo Y, Zhao MW, Sun DZ, Wei XL, Liu SJ, Zheng LQ: Interactions of two homologues of cationic surface active ionic liquids with sodium carboxymethylcellulose in aqueous solution. Colloid and Polymer Science 2012, 290(17):1721-1730. 103. Duteille F, Jeffery SLA: A phase II prospective, non-comparative assessment of a new silver sodium carboxymethylcellulose (AQUACELR Ag BURN) glove in the management of partial thickness hand burns. Burns 2012, 38(7):1041-1050. 104. Alam A, Mondal MIH: Utilization of Cellulosic Wastes in Textile and Garment Industries. I. Synthesis and Grafting Characterization of Carboxymethyl Cellulose from Knitted Rag. Journal of Applied Polymer Science 2013, 128(2):1206-1212. 105. Ahn JH, Shim MJ: The use of sodium hyaluronate-carboxymethylcellulose to prevent postoperative mastication pain from harvesting of temporalis fascia. Auris Nasus Larynx 2013, 40(1):7-10. 106. de Lima BV, Vidal RRL, Marques ND, Maia AMS, Balaban RD: Temperature-induced thickening of sodium carboxymethylcellulose and poly(N-isopropylacrylamide) physical blends in aqueous solution. Polymer Bulletin 2012, 69(9):1093-1101. 107. Lee WJ, Ramasamy E, Lee DY, Song JS: Efficient Dye-Sensitized Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes. Acs Applied Materials & Interfaces 2009, 1(6):1145-1149. 108. Kang M, Han Y, Choi H, Jeon M: Two-step heat treatment of carbon nanotube based paste as counter electrode of dye-sensitised solar cells. Electronics Letters 2010, 46(22):1509-U1551. 109. Seo SH, Kim SY, Koo BK, Cha SI, Lee DY: Influence of Electrolyte Composition on the Photovoltaic Performance and Stability of Dye-Sensitized Solar Cells with Multiwalled Carbon Nanotube Catalysts. Langmuir 2010, 26(12):10341-10346. 110. Sardar N, Kamil M, Kabir ud D: Solution behavior of anionic polymer sodium carboxymethylcellulose (NaCMC) in presence of cationic gemini/conventional surfactants. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2012, 415:413-420. 111. Johnson WC, Parson JB, Crew MC: Nitrogen Compounds of Gallium. III. The Journal of Physical Chemistry 1931, 36(10):2651-2654. 112. Maruska HP, Tietjen JJ: THE PREPARATION AND PROPERTIES OF VAPOR-DEPOSITED SINGLE-CRYSTAL-LINE GaN. Applied Physics Letters 1969, 15(10):327-329. 113. Pankove JI, Miller EA, Berkeyhe.Je: GAN ELECTROLUMINESCENT DIODES. Rca Review 1971, 32(3):383-&. 114. Kuramata A, Horino K, Domen K, Shinohara K, Tanahashi T: HIGH-QUALITY GAN EPITAXIAL LAYER GROWN BY METALORGANIC VAPOR-PHASE EPITAXY ON (111) MGAL2O4 SUBSTRATE. Applied Physics Letters 1995, 67(17):2521-2523. 115. Akasaki I, Amano H, Koide Y, Hiramatsu K, Sawaki N: Effects of ain buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1−xAlxN (0 < x ≦ 0.4) films grown on sapphire substrate by MOVPE. Journal of Crystal Growth 1989, 98(1–2):209-219. 116. Amano H, Sawaki N, Akasaki I, Toyoda Y: METALORGANIC VAPOR-PHASE EPITAXIAL-GROWTH OF A HIGH-QUALITY GAN FILM USING AN AIN BUFFER LAYER. Applied Physics Letters 1986, 48(5):353-355. 117. 蕭棟升: 以雷射剝離技術進行具鍍鎳基板氮化鎵蕭基二極體之研製. 台南市: 國立成功大學; 2005. 118. Haberstroh C, Helbig R, Stein RA: SOME NEW FEATURES OF THE PHOTOLUMINESCENCE OF SIC(6H), SIC(4H), AND SIC(15R). J Appl Phys 1994, 76(1):509-513. 119. Muench WV, Pfaffeneder I: BREAKDOWN FIELD IN VAPOR-GROWN SILICON-CARBIDE P-N-JUNCTIONS. J Appl Phys 1977, 48(11):4831-4833. 120. Slack GA: Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond. J Appl Phys 1964, 35:3460-3466. 121. Nakamura S, Senoh M, Mukai T: HIGH-POWER INGAN/GAN DOUBLE-HETEROSTRUCTURE VIOLET LIGHT-EMITTING-DIODES. Applied Physics Letters 1993, 62(19):2390-2392. 122. Nakamura S: InGaN-based blue light-emitting diodes and laser diodes. Journal of Crystal Growth 1999, 201–202(0):290-295. 123. Khan MA, Kuznia JN, Olson DT, Vanhove JM, Blasingame M, Reitz LF: HIGH-RESPONSIVITY PHOTOCONDUCTIVE ULTRAVIOLET SENSORS BASED ON INSULATING SINGLE-CRYSTAL GAN EPILAYERS. Applied Physics Letters 1992, 60(23):2917-2919. 124. Khan MA, Kuznia JN, Bhattarai AR, Olson DT: METAL-SEMICONDUCTOR FIELD-EFFECT TRANSISTOR BASED ON SINGLE-CRYSTAL GAN. Applied Physics Letters 1993, 62(15):1786-1787. 125. 李育箖: 氮化鎵/氮化銦鎵製備PIN及MQW結構之太陽能電池特性研究. 桃園縣: 長庚大學. 126. 林泉融: 製備二氧化鈦緻密層以改善染料敏化太陽能電池(DSSCs)之光電轉換效率. 苗栗縣: 國立聯合大學; 2011. 127. ORAZEM ME, TRIBOLLET B: ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY. New Jersey: WILEY; 2008. 128. Longo C, Freitas J, De Paoli M-A: Performance and stability of TiO2/dye solar cells assembled with flexible electrodes and a polymer electrolyte. Journal of Photochemistry and Photobiology A: Chemistry 2003, 159(1):33-39. 129. Bernard MC, Cachet H, Falaras P, Hugot-Le Goff A, Kalbac M, Lukes I, Oanh NT, Stergiopoulos T, Arabatzis I: Sensitization of TiO2 by polypyridine dyes - Role of the electron donor. J Electrochem Soc 2003, 150(3):E155-E164. 130. Wilson G: Electrochemistry: Principles, Methods, and Applications : Christopher M.A. Brett and Ana Maria Oliveira Brett, Oxford Science Publications, Oxford University Press, 1993, 427 pp., £25 (paperback), £55 (hardback). Bioelectrochemistry and Bioenergetics 1994, 34(2):207. 131. 胡啟章: 電化學原理與方法: 五南圖書; 2002. 132. 研發奈米科技的基本工具之一 電子顯微鏡介紹–SEM [] 133. Jiang Y, Yan Y, Zhang W, Ni L, Sun Y, Yin H: Synthesis of cauliflower-like ZnO–TiO2 composite porous film and photoelectrical properties. Applied Surface Science 2011, 257(15):6583-6589. 134. Xiao Y, Wu J, Yue G, Xie G, Lin J, Huang M: The preparation of titania nanotubes and its application in flexible dye-sensitized solar cells. Electrochimica Acta 2010, 55(15):4573-4578. 135. Jang S-R, Choi M-J, Vittal R, Kim K-J: Anchorage of N3 dye-linked polyacrylic acid to TiO2/electrolyte interface for improvement in the performance of a dye-sensitized solar cell. Solar Energy Materials and Solar Cells 2007, 91(13):1209-1214. 136. Uam H-S, Jung Y-S, Jun Y, Kim K-J: Relation of Ru(II) dye desorption from TiO2 film during illumination with photocurrent decrease of dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 2010, 212(2–3):122-128. 137. Bard AJ, Faulkner LR: Electrochemical Methods: Fundamentals and Applications. New York: Wily; 2000.
摘要: 目前的全球社會正面臨能源危機與溫室災難兩大難題,對能源的需求迫使我們去尋找更多可持續發展的資源,在這樣的環境下,低成本的染料敏化太陽能電池(Dye-sensitized solar cells, DSSC)因應而生。本論文分成兩部份,第一部分主要在探討對電極,分別在單純FTO和修飾一層奈米碳管的FTO上電沉積白金,測其光電轉換效率,並以場發射式掃描式電子顯微鏡(field emission scanning electron microscopy, FESEM)觀察表面形貌之差異。 第二部份的主題主要將氮化鎵(Gallium Nitride, GaN)配製成不同比例之GaN/TiO2水溶液,並利用Polyethylene glycol (PEG)提升薄膜的成膜性,我們將GaN/TiO2複合材料以刮刀法(doctor blade technique)修飾於FTO導電玻璃上,量測不同GaN含量之GaN/TiO2複合薄膜光電極染料敏化太陽能電池之光電轉換效率並藉由電化學交流阻抗分析GaN/TiO2奈米複合薄膜光電極的內部電阻。由光電轉換效率量測結果可得知在GaN含量為GaN/TiO2-Low時有最佳的光電轉換效率4.024 %,由電化學交流阻抗分析結果也顯示GaN/TiO2-Low奈米複合薄膜光電極有最低的內部電阻,因此GaN/TiO2-Low奈米複合薄膜光電極能使電子傳遞速度獲得提升,減少再結合現象的發生。接著我們利用場發射式掃描式電子顯微鏡(field emission scanning electron microscopy, FESEM) 觀察GaN/TiO2奈米複合薄膜光電極的表面形貌並利用紫外光/可見光分光光譜儀(UV/Vis spectrophotometer)分析GaN/TiO2奈米複合薄膜光電極所吸附染料分子的吸附量,藉此得知光電轉換效率表現上的差異是由於GaN之能隙(energy gap, Eg)與導帶(conduction band, ECB)與TiO2接近所造成。最後我們將探討GaN/TiO2-Low複合薄膜的厚度對於光電轉換效率之影響,根據結果顯示,在薄膜厚度為7.000 μm時有最佳的光電轉換效率4.770 %,與單純TiO2奈米薄膜光電極之光電轉換效率3.000 % 相比,GaN/TiO2-Low複合薄膜光電極在光電轉換效率表現上提升將近59%。
其他識別: U0005-1207201310525400
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.