Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3231
標題: 溶劑對有機半導體薄膜表面形貌的影響
Solvent Effect on Surface Morphology of Organic Semiconductors
作者: 陳雨鑫
Chen, Yu-Hsin
關鍵字: 多異質界面半導體材料
bulk heterojunction of semiconductor materials
溶劑
表面形貌
吸光係數
田口品質工程
solvent
surface morphology
absorption coefficient
Taguchi method
出版社: 化學工程學系所
引用: (1)馮垛生, “太陽能發電原理與應用”, 五南出版社 (2009) (2)R. F. Salzman, J. Xue, B. P. Rand, Alexander, M. E. Thompson, S. R. Forrest, “The Effects of Copper Phthalocyanine Purity on Organic Solar Cell Performance”, Organic Electronics 6 (2005) 242~246 (3)W. B. Chen, H. F. Xiang, Z. X. Xu, B. P. Yan, “Improving Efficiency of Organic Photovoltaic Cells with Pentacene-Doped CuPc Layer”, Appied Physics Letters 91 (2007) 1991109 (4)H. Xi, Z. Wei, Z. Duan, W. Xu, D. Zhu, “Facile Method for Fabrication of Nanostructured CuPC Thin Films To Enhance Photocurrent Generation”, Journal of Physics Chemistry C 112 (2008) 19934~19938 (5)P. Sullivan, S. Heutz, S. M. Schultes, T. S. Jones, “Influence of Codeposition on the Performance of CuPc–C60 Heterojunction”, Applied Physics Letters 84 (2004)1210~1212 (6)Y. Hsiao, W. T. Whang, S. C. Suen, J. Y. Shiu, C. P. Chen, “Morphological Control of CuPc and its Application in Organic Solar Cells”, Nanotechnology 19 (2008) 415603 (7)羅錦興, “田口品質工程指引”, 中國生產力中心 (1999) (8)H. Hoppe, N. S. Sariciftci, “Organic Solar cells : An over views”, Journal of Materials Research 19 (2004) 1924~1944 (9)龍文安, “積體電路半導體製程”, 高立圖書有限公司 (1998) (10)R. Laboratories, E. Kodak, “Two‐Layer Organic Photovoltaic Cell”, Analysis physics Letters 46 (1986) 183~185 (11)F. Yang, M. Shtein, S. R. Forrest, “Controlled Growth of a Molecular Bulk Heterojunction Photovoltaic Cell”, Nature material 4 (2005) 37~41 (12)P. Peumans, S. Uchida, S. R. Forrest, “Efficient Bulk Heterojunction Photovoltaic Cells Using Small-Molecular-Weight Organic Thin Films”, Nature 425 (2003) 158~162 (13)V. P. Singh, R. S. Singh, B. Parthasarathy, A. Aguilera, “Copper-Phthalocyanine-Based Organic Solar Cells with High Open-Circuit Voltage”, Applied Physics Letters 86 (2005) 082106 (14)P. Peumans and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanineC60 photovoltaic cells”, Applied Physics Letters 79 (2001) 126~128 (15)S. J. Li, X. M. Zhao, M. Ning, S. Rong, Z. Qing, L. Gang, “Dissolution of Copper Phthalocyanine and Fabrication of its Nano-Structure Film”, Society China Ser B-Chemistry 52 (2009) 911~915 (16)S. W. Hur, H. S. Oh, Y. C. Oh, D. H. Chung, J. U. Lee, J. W. Park, T. W. Kim, “Organic Photovoltaic Effects Using CuPc and C60 Depending on Layer Thickness”, Synthetic Metal 154 (2005) 49~52 (17)X. Mo, H. Z. Chen, M. M. Shi, M. Wang, “Syntheses and Aggregate Behaviors of Liquid Crystalline Alkoxycarbonyl Substituted Perylenes”, Chemical Physics Letters 417 (2006) 457~460 (18)石宇華、史文龍、張成, “分析化學”, 鼎茂出版社 (2008) (19)方智, “有機化學”, 及第出版社 (2008) (20)林敬二, “儀器分析”, 美亞書版股份有限公司 (1995)   (21)R. Stolarski, K. Fiksinski, “Fluorescent Perylene Dyes for Liquid Crystal Displays”, Dyes and Pigments 24 (1994) 295~303 (22)C. H. Chen, W. T. Chung, M. L. Tsai, K. T. Hung, “Fabrication and Performance of Copper Phalocyanine/Squaraine Dye/Perylene Composite with Buik Heterojunctions by the Solution Blending Process”, American Chemical Society 51 (2012) 3630~3638 (23)X. Mo, H. Z. Chen, Y. Wang, M. M. Shi, M. Wang, “Fabrication and Photoconductivity Study of Copper PhthalocyaninePerylene Composite”, Journal of Physics Chemistry B 109 (2009) 7659-7663 (24)S. Sun, Z. Fan., Y. Wang, J. Haliburton, “Organic Solar cell optimizations”, Journal of Materials Science 40 (2004) 1429~1443 (25)A.A.M. Farag, “Optical Absorption Studies of Copper Phthalocyanine Thin Films”, Optics and Lasers Technology 39 (2007) 728~732 (26)S. Uchida, J. Xue, B. P. Rand, S. R. Forrestb, “Organic small molecule solar cells with a homogeneously mixed copper”, Appled Physics Letters 84 (2004) 4218~4220 (27)S. Heutz, P. Sullivan, B.M. Sanderson, S.M. Schultes, T.S. Jones, “Influence of molecular architecture and intermixing on the photovoltaic, morphological and spectroscopic properties of CuPc–C60 heterojunctions”, Solar Energy Materials & Solar Cells 83 (2004) 229–245 (28)O. Choia, K. K.Dengb, N. J. Kimc, R. Y. Surampallie, Z. Hua , “The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth”, Water Research 42 (2008 ) 3066 – 3074   (29)G. Yu, J. Gao, J. C. Hummeien, F. Wudi, A. J. Heeger, “Polymer Photovoltaic Cells Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science 270 (1995)1789~1791 (30)I. Zhivkov, E. Spassova, G. Danev, S. Andreev, T. Ivanovb, “Vacuum deposited copper phthalocyanine thin films—structure and surface morphology” , Elsevier Science Letters 51 (1998) 189~192 (31)王建義, “薄膜工程學”, 全華圖書股份有限公司 (2008) (32)羅吉宗, “薄膜科技與應用”, 全華圖書股份有限公司 (2009) (33)S. Kamoldilok, B. Tunhoo, S. Sumriddetchkajorn, J. Nukeaw, “The Effect of Substrate Temperature on Structure and Optical Properties of Copper Phthalocyanine Thin Films Perpared by Organic Evaporation”, Nano Engineered and Molecular Systems 16 (2007) 604~607 (34)P. Peumans, S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanineC60 photovoltaic cells”, Applied Physics Letters 79 (2001) 126~128 (35)V. P. Singh, R. S. Singh, B. Parthasarathy, A. Aguilera, “Copper-phyhalocyanine-based organic solar cells with high open –circuit voltage”, Appied Physics Letters 86 (2005) 082106 (36)H. Hoppe, N. Sariciftci, “Organic Solar cells : An over views”, Materials Research Society 19 (2004) 1924~1944 (37)陳耀茂, 黃廷彬, “田口品質工程Excel應用手冊”, 中國生產力中心 (2006)
摘要: 太陽能電池應用方式皆是在戶外為主,以利將光能轉變成電能來使用。有機太陽能電池擁有許多優點,像是可以藉由改變有機材料的特性,或是改善製程方式,使得光電轉換效率有所增益。 有機材料的改質,可以增加材料對光的吸光波長範圍,間接提高光的吸光量。另一方面也能改善有機材料的溶解度。好的溶解度,對於在製成薄膜所遇到的問題將會減少許多。 本研究是利用不同的溶劑:二氯甲烷、甲苯和環己酮,分別和乙酸乙酯的混合溶劑,將溶解在溶劑中的有機材料:銅酞花菁衍生物(CuPc-C7)、苝衍生物(perylene-C7),CuPc-C7當donor,perylene-C7為acceptor,用旋轉塗佈的方式去製成薄膜。接著,藉由UV-Vis去檢測薄膜的光吸收度,經過計算得到單位厚度的光吸收度。實驗結果顯示,不同溶劑製成的薄膜,吸收係數的確也不一樣,造成的原因主要來自於薄膜的表面形貌。由原子力顯微鏡(AFM)可以觀察到薄膜的表面形貌,以Copper phthalocyanine –C7材料為例,環己酮溶劑製成的薄膜具有均勻、緻密的表面形貌,其薄膜表面粗糙度0.81nm。二氯甲烷製成的薄膜居次,薄膜表面粗糙度1.46nm。甲苯製成的薄膜表面形貌最為粗糙,薄膜表面粗糙度2.71nm。探究原因,因為環己酮為亞極性溶劑(ε:13.3~25.0),有助於分子間的排列。二氯甲烷沸點為三者最低,為40°C,在低溫烘烤過程中,緩慢地去形成薄膜,有助於分子自發排列。而均勻、緻密的薄膜表面形貌,將會有助於形成多異質界面,因而增加太陽能元件的光電轉換效率。 最後,藉由田口實驗探討DA材料混合的最佳效果,找出影響控制因子中的最佳水準,利用這個最佳條件,對於薄膜製程加以改善。而實驗結果也證實,在最佳水準條件下,使用環己酮混合溶劑、DA比例為2:1、濃度為5%、烘烤條件90°C 20分鐘,其薄膜表面粗糙度RMS為1.88(nm),吸光係數達到0.63(au/μm),的確有所增益,增益幅度最多達到0.40(au/μm),符合預估的結果。
Solar cell applications are mainly in the outdoors, in order to facilitate the use of light energy into electrical energy. There are many advantages in organic solar cell , such as by changing the properties of organic material or methods of manufacturing the process, so that the photoelectric conversion efficiency will increase. By modified organic material, the light absorption wavelength range of organic material can increase, indirectly enhance the amount of light absorption. The other hand, it also can improve the solubility of the organic material. Good solubility will reduce the problem in films manufacturing This study was conducted using a different solvent: methylene chloride, toluene and cyclohexanone, respectively mixed solvent of ethyl acetate. Dissolved organic material in a solvent:copper phthalocyanine darivative(CuPc-C7)、perylene derivative(perylene-C7), a film was formed with the method of spin coating. Detecting the absorption of film by the UV-Vis, and by calculating, we can obtain the absorption of the unit thickness. Experimental results show that the films made of different solvents, the absorption coefficient is different. The reasons mainly result from the film surface morphology. The atomic force microscope was used to observe the surface morphology of the films. For example, the CuPc-C7 film made from cyclohexanone solvent is a uniform, dense surface morphology, and it’s roughness is 0.81nm. The film prepared from dichloromethane is worse than made of cyclohexanone, and it’s roughness is 1.46nm. The surface morphology of film made from toluene is the most rough, and it’s roughness is 2.71nm. Because cyclohexanone is aprotic polarity solvent (ε:13.3~25.0), it contributes to arranging molecules. In low temperature baking process, forming the film is slow, it helps molecular spontaneous arrangement. Because of the low boiling point of methylene chloride, 40°C, the films made of methylene chloride is also good. And uniform, dense surface morphology will help to form heterojunction, thus will increase the photoelectric conversion efficiency of the solar cell. Finally, we study on the mixed materials of donor and acceptor by Taguchi method, and will obtain the factor of effecting the photoelectric conversion efficiency of the solar cell. By Taguchi method, the film processing will be improved. Under optimal condition (Using a mixed solvent of cyclohexanone, DA ratio of 2:1, 5% concentration, baking conditions 90 ° C 20 minutes), the RMS roughness is 1.88(nm), and the absorption coefficient is 0.63(au/μm). The results also confirm that, in the optimum conditions, the absorption coefficient increase 0.4(au/μm),and with expected results.
URI: http://hdl.handle.net/11455/3231
其他識別: U0005-2308201313011900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308201313011900
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.