Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3237
標題: 磁性奈米粒子製備方法、特性及固定化應用之評估分析
Evaluation on the preparation, characterization and application of magnetic nanoparticles for enzymes immobilization
作者: 林宜萱
Lin, Yi-Hsuan
關鍵字: 磁性奈米粒子
Magnetic nanoparticles
酵素固定化
脂肪分解酵素
Enzyme immobilization
Lipase
出版社: 化學工程學系所
引用: [1]陳文章, 謝繼珩, 科際整合又一例 - 生物技術與化學工程 科學月刊 (1987). [2]P. Peters, A Guide To Genetic Engineering, Biotechnology (1993). [3]工業技術研究院, 產業經濟與趨勢研究, in: 財團法人工業技術研究院產業經濟與趨勢研究中心 (Ed.), 2000. [4]P. Knigh, Downstream Process, Nature Biotechnology 7 (1989) 777-782. [5]陳志義, 製備固定化金屬親和薄膜對盤尼西林醯胺酵素之純化與固定化探討, 國立中興大學化學工程學系博士論文 (2009). [6]廖敏宏, 磁性奈米載體在生物觸媒和生化分離之應用, 國立成功大學化學工程學系博士論文 (2002). [7]戴嘉亨, 從基礎電磁學到奈米材料之磁性質. [8]陳國誠, 微生物酵素工程學, 藝軒圖書有限公司, 1999. [9]郭傑民, 洪哲穎, 熊光濱, 生物觸媒之現況與發展, 化工資訊月刊 4 (2000) 23-29. [10]吳建一, 鍾宛真, 葉修鋒, 固定化酵素之演進與展望, 化工 53 (2006). [11]A. Kotha, L. Selvaraj, C.R. Rajan, S. Ponrathnam, K.K. Kumar, G.R. Ambekar, J.G. Shewale, Adsorption and expression of penicillin G acylase immobilized onto methacrylate polymers generated with varying pore generating solvent volume, Applied Biochemistry and Biotechnology 30 (1999) 297-302. [12]A. Naidja, P.M. Huang, J.-M. Bollag, Activity of tyrosinase immobilized on hydroxyaluminum-montmorillonite complexes, Journal of Molecular Catalysis A: Chemical 115 (1997) 305-316. [13]J. He, X. Li, D.G. Evans, X. Duan, C. Li, A new support for the immobilization of penicillin acylase, Journal of Molecular Catalysis B: Enzymatic 11 (2000) 45-53. [14]W. Tischer, F. Wedekind, Immobilized Enzymes: Methods and Applications, Topics in Current Chemistry 200 (1999) 96-123. [15]J.L. Brash, P.W. Wojciechowski, Interfacial Phenomena and Bioproducts Marcel Dekker New York, 1996. [16]陳東煌, 固定化尿素酶膜反應分離器去除水溶液中尿素之動力學研究, 國立成功大學化學工程研究所博士論文 (1992). [17]陳國誠, 生物固定化技術與產業應用, 茂昌圖書有限公司, 2000. [18]S. Hjerten, K. Yao, K.O. Erikson, B. Johasson, Gradient and isocratic high-performance hydrophobic interaction chromatography of proteins on agarose columns, Journal of Chromatography 359 (1986) 99-109. [19]黃世宏, 氧化鐵磁性奈米粒子在酵素固定化及分離上之應用研究, 國立成功大學碩士論文 (2003). [20]A. Sassolas, L.J. Blum, B.D. Leca-Bouvier, Immobilization strategies to develop enzymatic biosensors, Biotechnology Advances 30 (2012) 489-511. [21]曹茂盛, 關長斌, 徐甲強, 奈米材料導論, 學富文化事業有限公司出版, 2002. [22]大泊巖, 圖解奈米技術, 全華科技圖書股份有限公司, 2003. [23]張安華, 實用奈米技術, 新文京開發出版股份有限公司, 2005. [24]蔡信行, 孫光中, 奈米科技導論-基本原理及應用, 新文京開發出版股份有限公司, 2005. [25]張松文, 以氧化鐵磁性奈米粒子分離伴刀豆球蛋白之研究, 國立成功大學化學工程學系碩士論文 (2007). [26]何建新, FePt奈米微粒之製備與自組裝特性研究, 國立清華大學材料科學工程研究所碩士論文 (2004). [27]王正文, FePt和核殼式FePt@Au奈米粒子的製備及性質探討與生醫上之應用, 私立東海大學化學工程研究所碩士論文 (2007). [28]J. Wang, K.P. Loh, Y.L. Zhong, M. Lin, J. Ding, Y.L. Foo, Bifunctional FePt Core−Shell and Hollow Spheres : Sonochemical Preparation and Self-Assembly, Chem. Mater. 19 (2007) 2566-2572. [29]黃琳育, FePt磁性奈米粒子的製備、應用及其發展, 私立東海大學化學工程與材料工程學系碩士論文 (2011). [30]郭曉婷, 吳明昌, 磁性粒子於醫療及酵素固定化、純化之應用, 台灣農業化學與食品科學 47 (2009) 87-95. [31]T.K. Indira, P.K. Lakshmi, Magnetic Nanoparticles – A Review, International Journal of Pharmaceutical Sciences and Nanotechnology 3 (2010) 1035-1042. [32]P. Tartaj, M.P. Morales, T. Gonzalez-Carreno, S. Veintemillas-Verdaguer, C.J. Serna, Advances in magnetic nanoparticles for biotechnology applications, Journal of Magnetism and Magnetic Materials 290-291 (2005) 28-34. [33]B.R. Pieters, R.A. Williams, C. Webb, Colloid and surface engineering : applications in the process industries, Oxford : Butterworth-Heinemann, 1992. [34]生醫奈米科技教學資源中心, 生醫奈米技術, in: 教育部「生物及醫學科技人才培育先導型計畫」 (Ed.), 2007. [35]溫明鏡, 氧化鐵磁性奈米粒子之合成與特性研究, 國立中正大學物理研究所碩士論文 (2003). [36]A.-H. Lu, E.L. Salabas, F. Schuth, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angewandte Chemie International Edition 46 (2007) 1222 -1244. [37]Y. Jiang, C. Guo, H. Xia, I. Mahmood, C. Liu, H. Liu, Magnetic nanoparticles supported ionic liquids for lipase immobilization:Enzyme activity in catalyzing esterification, Journal of Molecular Catalysis B: Enzymatic 58 (2009) 103-109. [38]Y. Wu, Y. Wang, G. Luo, Y. Dai, In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution, Bioresource Technology 100 (2009) 3459-3464. [39]Y. Sui, Y. Cui, Y. Nie, G.-M. Xia, G.-X. Sun, J.-T. Han, Surface modification of magnetite nanoparticles using gluconic acid and their application in immobilized lipase, Colloids and Surfaces B: Biointerfaces 93 (2012) 24-28. [40]Y. Isaacson, L. Chensny, R.E. Shepherd, S. Zhang, R. Kortes, K. John, Lactobionic and gluconic acid complexes of FeII and FeIII; control of oxidation pathways by an organ transplantation preservant, Journal of Inorganic Biochemistry 49 (1993) 23-48. [41]X. Wei, Z. Wei, L. Zhang, Y. Liu, D. He, Highly water-soluble nanocrystal powders of magnetite and maghemite coated with gluconic acid: Preparation, structure characterization, and surface coordination, Journal of Colloid and Interface Science 354 (2011) 76-81. [42]C.-H. Kuo, Y.-C. Liu, C.-M.J. Chang, J.-H. Chen, C. Chang, C.-J. Shieh, Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles, Carbohydrate Polymers 87 (2012) 2538-2545. [43]J.Y. Park, E.S. Choi, M.J. Baek, G.H. Lee, Colloidal stability of amino acid coated magnetite nanoparticles in physiological fluid, Materials Letters 63 (2009) 379-381. [44]W. Cai, J. Wan, Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols, Journal of Colloid and Interface Science 305 (2007) 366-370. [45]S.-L. Tie, Y.-Q. Lin, H.-C. Lee, Y.-S. Bae, C.-H. Lee, Amino acid-coated nano-sized magnetite particles prepared by two-step transformation, Colloids and Surfaces A: Physicochemical and Engineering Aspects 273 (2006) 75-83. [46]H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley & Sons, New York, 1962. [47]D.-G. Lee, K.M. Ponvel, M. Kim, S. Hwang, I.-S. Ahn, C.-H. Lee, Immobilization of lipase on hydrophobic nano-sized magnetite particles, Journal of Molecular Catalysis B: Enzymatic 57 (2009) 62-66. [48]A. Dyal, K. Loos, M. Noto, S.W. Chang, C. Spagnoli, K.V.P.M. Shafi, A. Ulman, M. Cowman, R.A. Gross, Activity of Candida rugosa Lipase Immobilized on γ-Fe2O3 Magnetic Nanoparticles, Journal of the American Chemical Society 125 (2003) 1684-1685. [49]S.Yu, G.M.Chow, Synthesis of monodisperse iron oxide and iron/iron oxide core/shell nanoparticles via iron-oleylamine complex, Journal of nanoscience and nanotechnology 6 (2006) 2135-2140. [50]H. SH, L. MH, C. DH, Direct binding and characterization of lipase onto magnetic nanoparticles, Biotechnol Prog. 19 (2003) 1095-1100. [51]E. Ranjbakhsh, A.K. Bordbar, M. Abbasi, A.R. Khosropour, E. Shams, Enhancement of stability and catalytic activity of immobilized lipase on silica-coated modified magnetite nanoparticles, Chemical Engineering Journal 179 (2012) 272-276. [52]鄭豐裕, 四氧化三鐵磁性奈米粒子之製備及其在生物醫學上的應用, 國立成功大學化學工程學系博士論文 (2006). [53]Y. Yong, Y.X. Bai, Y.F. Li, L. Lin, Y.J. Cui, C.G. Xia, Preparation and application of polymer-grafted magnetic nanoparticles for lipase immobilization, Journal of Magnetism and Magnetic Materials 320 (2008) 2350-2355. [54]G.-y. Li, Y.-r. Jiang, K.-l. Huang, P. Ding, J. Chen, Preparation and properties of magnetic Fe3O4-chitosan nanoparticles, Journal of Alloys and Compounds 466 (2008) 451-456. [55]K.S. Suslick, M. Fang, T. Hyeon, Sonochemical Synthesis of Iron Colloids, Journal of the American Chemical Society 118 (1996) 11960-11961. [56]S. Si, C. Li, X. Wang, D. Yu, Q. Peng, Y. Li, Magnetic Monodisperse Fe3O4 Nanoparticles, Crystal growth & Design 5 (2005) 391-393. [57]X.J. Huang, A.G. Yu, Z.K. Xu, Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application, Bioresource Technology 99 (2008) 5459-5465. [58]B.K. Vaidya, G.C. Ingavle, S. Ponrathnam, B.D. Kulkarni, S.N. Nene, Immobilization of Candida rugosa lipase on poly(allyl glycidyl ether-coethylene glycol dimethacrylate) macroporous polymer particles, Bioresource Technology 99 (2008) 3623-3629. [59]S.L. Gao, Y.J. Wang, T. Wang, G.S. Luo, Y.Y. Dai, Immobilization of lipase on methyl-modified silica aerogels by physical adsorption, Bioresource Technology 100 (2009) 996-999. [60]G. Bayramoğlu, B. Kaya, M.Y. Arıca, Immobilization of Candida rugosa lipase onto spacer-arm attached poly(GMA-HEMA-EGDMA) microspheres, Food Chemistry 92 (2005) 261-268. [61]X. Liu, Y. Guana, R. Shen, H. Liu, Immobilization of lipase onto micron-size magnetic beads, Journal of Chromatography B, 822 (2005) 91-97. [62]W.J. Ting, K.Y. Tung, R. Giridhar, W.T. Wu, Application of binary immobilized Candida rugosa lipase for hydrolysis of soybean oil, Journal of Molecular Catalysis B: Enzymatic 42 (2006) 32-38. [63]S. Duinhoven, R. Poort, G. Van der Voet, W.G.M. Agterof, W. Norde, J. Lyklema, Driving Forces for Enzyme Adsorption at Solid-Liquid Interfaces: 1. The Serine Protease Savinase, Journal of Colloid and Interface Science 170 (1995) 340-350. [64]S.-H. Chiou, W.-T. Wu, Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups, Biomaterials 25 (2004) 197-204. [65]J. Honga, D. Xua, P. Gonga, H. Suna, L. Donga, S. Yaoa, Covalent binding of α-chymotrypsin on the magnetic nanogels covered by amino groups, Journal of Molecular Catalysis B: Enzymatic 45 (2007) 84-90. [66]M. Yiğitoğlu, Z. Temocin, Immobilization of Candida rugosa lipase on glutaraldehyde-activated polyester fiber and its application for hydrolysis of some vegetable oils, Journal of Molecular Catalysis B: Enzymatic 66 (2010) 130-135. [67]S.K. Sahu, A. Chakrabarty, D. Bhattacharya, S.K. Ghosh, P. Pramanik, Single step surface modification of highly stable magnetic nanoparticles for purification of His-tag proteins, Journal of Nanoparticle Research 13 (2011) 2475-2484. [68]X.Q. Liu, Z.Y. Ma, J.M. Xing, H.Z. Liu, J. Magn, Preparation and characterization of amino-silane modified superparamagnetic silica nanospheres, J. Magn. Mater. 270 (2004) 1-6. [69]P. Tartaj, C.J. Serna, Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites, Journal of the American Chemical Society 125 (2003) 15754-15755. [70]K.D. Pradeep, H.A. Frances, Metal-Coordination Interactions in the Template-Mediated Synthesis of Substrate-Selective Polymers: Recognition of Bistimidazole) Substrates by Copper(I1) Iminodiacetate Containing Polymers, Macromolecules 25 (1992) 7051-7059. [71]M.H. Valkenberg, C. deCastro, W.F. Holderich, Immobilisation of chloroaluminate ionic liquids on silica materials, Topics in Catalysis 14 (2001) 139-144. [72]C.P. Mehnert, R.A. Cook, N.C. Dispenziere, M. Afeworki, Supported Ionic Liquid Catalysis - A New Concept for Homogeneous Hydroformylation Catalysis, Journal of the American Chemical Society 124 (2002) 12932-12933. [73]S. Yu, G.M. Chow, Carboxyl group (-CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications, Journal of Materials Chemistry 14 (2004) 2781-2786. [74]Y.S. Kang, S. Risbud, J.F. Rabolt, P. Stroeve, Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles, Chemistry of materials 8 (1996) 2209-2211. [75]T. Fried, G. Shemer, G. Markovich, Ordered Two-Dimensional Arrays of Ferrite Nanoparticles, Advanced materials 13 (2001) 1158-1161. [76]S.-L. Tie, H.-C. Lee, Y.-S. Bae, M.-B. Kim, K. Lee, C.-H. Lee, Monodisperse Fe3O4/Fe@SiO2 core/shell nanoparticles with enhanced magnetic property, Colloids and Surfaces A: Physicochemical and Engineering Aspects 293 (2007) 278-285. [77]M. Arruebo, W.Y. Ho, K.F. Lam, X. Chen, J. Arbiol, J. Santamaria, K.L. Yeung, Preparation of magnetic nanoparticles encapsulated by an ultrathin silica shell via transformation of magnetic Fe-MCM-41, Chemistry of Materials 20 (2008) 486-493. [78]X. Chen, K.F. Lam, Q. Zhang, B. Pan, M. Arruebo, K.L. Yeung, Synthesis of highly selective magnetic mesoporous adsorbent, The Journal of Physical Chemistry C 113 (2009) 9804-9813. [79]J. Jang, H. Lim, Characterization analytical application of surface modified magnetic nanoparticles, Microchemical Journal 94 (2010) 148-158. [80]Y. Wang, B. Liu, Conjugated polymer as a signal amplifier for novel silica nanoparticle-based fluoroimmunoassay, Biosensors and Bioelectronics 24 (2009) 3293-3298. [81]C. Pan, B. Hu, W. Li, Y. Sun, H. Ye, X. Zeng, Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4-chitosan nanoparticles, Journal of Molecular Catalysis B:Enzymatic 61 (2009) 208-215. [82]C.-Y. Hsieh, S.-P. Tsai, M.-H. Ho, D.-M. Wang, C.-E. Liu, C.-H. Hsieh, H.-C. Tseng, H.-J. Hsieh, Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds, Carbohydrate Polymers 67 (2007) 124-132. [83]R.A.A. Muzzarelli, C. Muzzarelli, Chitosan Chemistry: Relevance to the Biomedical Sciences, Advances in Polymer Science 186 (2005) 151-209. [84]Q. Wang, Z. Dong, Y. Du, J.F. Kennedy, Controlledrelease of ciprofloxacinhydrochloride from chitosan/polyethyleneglycolblendfilms, Carbohydrate Polymers 69 (2007) 336-343. [85]謝佩娟, 王瑞琪, 陳樹人, 以Glycidyltrimethylammonium Chloride修飾之磁性奈米粒子之製備, 工程科技與教育學刊 7 (2010) 203-207. [86]S. Wu, A. Sun, F. Zhai, J. Wang, W. Xu, Q. Zhang, A.A. Volinsky, Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation, Materials Letters 65 (2011) 1882-1884. [87]Z. Huacong, L. Wei, S. Qinghui, G. Hongshuai, X. Peng, D. Fuli, L. Huizhou, Immobilization of Penicillin G Acylase on Magnetic Nanoparticles Modified by Ionic Liquids, Chinese Journal of Chemical Engineering 20 (2012) 146-151. [88]P. Tartaj, C.J. Serna, Communication Synthesis of Monodisperse Superparamagnetic Fe/Silica Nanospherical Composites, Journal of the American Chemical Society 125 (2003) 15754-15755. [89]M.H. Valkenberg, C. deCastro, W.F. Holderich, Friedel-Craftsacylation of aromaticscatalysed by supportedionicliquids, Applied Catalysis A: General 215 (2001) 185-190. [90]L. Zeng, K. Luo, Y. Gong, Preparation and characterization of dendritic composite magnetic particles as a novel enzyme immobilization carrier, Journal of Molecular Catalysis B: Enzymatic 38 (2006) 24-30. [91]J.M. Palomo, C. Ortiz, G. Fernandez-Lorente, M. Fuentes, J.M. Guisan, R. Fernandez-Lafuente, Lipase–lipase interactions as a new tool to immobilize and modulate the lipase properties, Enzyme and Microbial Technology 36 (2005) 447-454. [92]M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry 72 (1976) 248-256. [93]S. Hwang, K.-T. Lee, J.-W. Park, B.-R. Min, S. Haam, I.-S. Ahna, J.-K. Jung, Stability analysis of Bacillus stearothermophilus L1 lipase immobilized on surface-modified silica gels, Biochemical Engineering Journal 17 (2004) 85-90. [94]S.-H. Huang, M.-H. Liao, D.-H. Chen, Direct Binding and Characterization of Lipase onto Magnetic Nanoparticles, Biotechnology Progress 19 (2003) 1095-1100. [95]Z. Jia, W. Yujun, L. Yangcheng, M. Jingyu, L. Guangsheng, In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion, Reactive & Functional Polymers 66 (2006) 1552-1558. [96]J. Qu, G. Liu, Y. Wang, R. Hong, Preparation of Fe3O4-chitosan nanoparticles used for hyperthermia, Advanced Powder Technology 21 (2010) 461-467. [97]L.-y. Zhang, X.-j. Zhu, H.-w. Sun, G.-r. Chi, J.-x. Xu, Y.-l. Sun, Control synthesis of magnetic Fe3O4-chitosan nanoparticles under UV irradiation in aqueous system, Current Applied Physics 10 (2010) 828-833. [98]鄭豐裕, 四氧化三鐵磁性奈米粒子之製備及其在生物醫學上的應用, 國立成功大學化學研究所博士論文 (2006). [99]J. Kraut, How do enzymes work, Sicence 242 (1988) 533-540.
摘要: 隨著生物科技的發展與進步,對酵素分離純化有更高技術的要求,於是發展出磁性奈米粒子之方法。本論文針對多篇文獻,針對Fe3O4奈米粒子製備方法、生物相容性、特性及酵素固定化上的應用,深入探討比較與評估。 磁性奈米粒子的製備,首先以化學共沉澱法製備,接著以各種高分子,加以結構改質,並藉由穿透式電子顯微鏡(Transmission electron microscopy,TEM)、掃描式電子顯微鏡(Scanning electron microscopy,SEM)和X-光繞射(X-ray diffractometry,XRD) 分析結構變化。由分析比較得知,改質後的磁性奈米粒子,粒徑變大、結構改變、物理聚集現象改善,但反而失去小粒徑優勢。利用傅立葉轉換紅外線光譜(Fourier transform infrared spectroscopy,FTIR)、熱量分析儀(Thermogravimetric Analyzer,TGA)與光學分析確認,具衍生功能性的官能基,共價鍵結固定在磁性奈米粒子表面。利用振動樣品測磁儀(Vibrating sample magnetometer,VSM)和超導量子干涉元件(Superconducting quantum interference devices,SQUID)分析其磁學性質,改質後的磁性奈米粒子,飽和磁化量雖降低,但仍具有順磁之特性。藉由固定化脂肪分解酵素(Lipase)分析比較,得知酵素初始濃度、反應溫度、pH值和離子強度等會影響酵素固定化之效應。其中以GLA-MNPs的製備方法為最佳,即lipase初始濃度2.5 mg/mL、pH 8.5和溫度35°C,可得到最大活性116 U/mg protein。若以穩定性分析,則以CS-MNPs的製備方法為最佳,其重覆使用次數可達到20次以及30天的貯存能力。在耐酸鹼性、溫度、重覆循環使用性和貯存安定性上,固定化lipase都遠高於自由lipase。綜和以上結果說明,磁性粒子於酵素固定化載體上深具可行性;未來在生物科技應用上,具有更廣泛的應用價值。
As per the improvement of biotechnology, more advanced approaches were needed for enzyme separation and purification in the applications. The recently developed magnetic nanoparticles (MNPs) fit this demand. In this review, the preparation methods, analysis, biocompatibility, characteristics, enzyme immobilization and applications of MNPs were thoroughly compared, evaluated and discussed. From the literature, the Fe3O4 magnetic nanoparticles were prepared by a series of chemical co-precipitation reaction. Afterward, various approaches were used to modify and couple functional groups on the surface for further use. The MNPs morphology and structural changes were determined by using transmission electron microscopy (TEM), Scaning electron microscopy (SEM) and X-ray diffraction analysis (XRD). As shown in the results, the MNPs sizes would be increased, its structural changed, and the physical aggregation was improved after chemical modification reactions. However, the advantage of nano size for MNPs would always be lost. By using Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analyzer (TGA) and optical analysis instrument, the functional groups were confirmed to be covalently bound on the surface of Fe3O4 nanoparticles. The magnetic properties were anlayzed with vibrating sample magnetometer (VSM) and superconducting quantum interference device (SQUID). It showed that the saturation magnetization of MNPs was reduced after modification. Nevertheless, the paramagnetic properties were still preserved. As for lipase immobilization with MNPs, factors such as lipase concentration, temperature, and pH were taken into consideration. The preparation of GLA-MNPs was shown to exhibit the best lipase activity of 116 U/mg, when the initial lipase concentration was 2.5 mg/mL, at pH 8.5 and 35�C. As for the stability analysis, the preparation of CS-MNPs could endure more than 20 times resue and 30 days of storage test. As compared with the free lipase, the immobilized lipase expressed higher temperature and pH resistance, more stable in repeated uses and storage time. The MNPs were found to possess more potential for applications in the biotechnology field.
URI: http://hdl.handle.net/11455/3237
其他識別: U0005-1608201222093500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1608201222093500
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.