Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3245
DC FieldValueLanguage
dc.contributor李榮和zh_TW
dc.contributorRong-Ho Leeen_US
dc.contributor.author黃嬿玲zh_TW
dc.contributor.authorHuang, Yan-Lingen_US
dc.contributor.other化學工程學系所zh_TW
dc.date2012en_US
dc.date.accessioned2014-06-06T05:31:33Z-
dc.date.available2014-06-06T05:31:33Z-
dc.identifierU0005-2108201213362200en_US
dc.identifier.citation1. J. Zyss, D. S. Chemla, Nonlinear Optical Properties of Organic Molecules and Crystals Academic Press 1, Charpter 1 (1987). 2. W.-J. Kuo, G.-H. Hsiue, R.-J. Jeng, Synthesis and macroscopic second-order nonlinear optical properties of poly(ether imide)s containing a novel two-dimensional carbazole chromophore with nitro acceptors. Journal of Materials Chemistry 12, 868 (2002). 3. K. Van den Broeck et al., High glass transition chromophore functionalised polyimides for second-order nonlinear optical applications. Polymer 42, 3315 (2001). 4. H.-C. Tsai, W.-J. Kuo, G.-H. Hsiue, Highly Thermal Stable Main-Chain Nonlinear Optical Polyimide Based on Two-Dimensional Carbazole Chromophores. Macromolecular Rapid Communications 26, 986 (2005). 5. G. Xu et al., Permanent optical poling in polyurethane via thermal crosslinking. Optics Communications 153, 95 (1998). 6. W.-J. Kuo et al., Stable second-order NLO semi-IPN system based on bipyridine-containing polyimide and alkoxysilane dye. Polymers for Advanced Technologies 16, 515 (2005). 7. Y.-C. Chen et al., Nonlinear optical polyimides consisting of chromophore-containing dendrons with site-isolation effect. Polymers for Advanced Technologies 20, 493 (2009). 8. 石明豐, 簡單了解非線性光學. 科學人 1, 84 (1997). 9. J. Messier, F. Kajzar, P. Prasad, Organic Molecules for Nonlinear Optics and Photonics Series:E. Springer, 194 (1991). 10. Y. Shuto, M. Amano, Reflection measurement technique of electro-optic coefficients in lithium niobate crystals and poled polymer films. Journal of Applied Physics 77, 4632 (1995). 11. C. C. Teng, H. T. Man, Simple reflection technique for measuring the electro-optic coefficient of poled polymers. Applied Physics Letters 56, 1734 (1990). 12. M. Sigelle, Determination of the electrooptic coefficients of 3-methyl 4-nitropyridine 1-oxide by an interferometric phase-modulation technique. Journal of Applied Physics 52, 4199 (1981). 13. J. Heinen, Determination of the recombination coefficients in undoped (In,Ga)(As,P) from transient optical output analysis of (In,Ga)(As,P)-InP double heterostructure LED’s. Journal of Applied Physics 53, 1800 (1982). 14. H. Uchiki, T. Kobayashi, New determination method of electro-optic constants and relevant nonlinear susceptibilities and its application to doped polymer. Journal of Applied Physics 64, 2625 (1988). 15. L. R. Dolton, A. W. Haper, Photoactive organic materials for Electro-optic modulator and high density Optical memory applications. In: Kajzar, F.; Avranovich, V. M.; Lee, C. Y. C. (eds) Photoactive organic materials: science and application. NATO ASI Series 9, 183 (1996). 16. P. R. Ashley, Component integration and application with organic Polymers. In: Kajzar, F.; Avranovich, V. M.; Lee, C. Y. C. (eds) Photoactive organic materials: science and application. NATO ASI Series 9, 199 (1996). 17. M. C. Flipse et al., Recent progress in Polymer based Electro-optic modulators: materials and technology. In: F. Kajzar, V. M. Avranovich, C. Y. C. Lee(eds) Photoactive organic materials: science and application. NATO ASI Series 9, 229 (1996). 18. R. Normandin, G. I. Stegeman, Nondegenerate four-wave mixing in integrated optics. Optics Letters 4, 58 (1979). 19. R. N. a. G. I. Stegeman, Picosecond signal processing with planar, nonlinear integrated optics. Applied Physics Letters 36, 253 (1980). 20. R. N. a. G. I. Stegeman, A picosecond transient digitizer based on nonlinear integrated optics. Applied Physics Letters 40, 759 (1982). 21. E. J. McLellan, J. F. Figueira, Ultrafast Pockels cells for the infrared. Review of Scientific Instruments 50, 1213 (Oct, 1979). 22. P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, Effects of Dispersion and Focusing on the Production of Optical Harmonics. Physical Review Letters 8, 21 (1962). 23. D. B.L. et al., Connection Between Charge Transfer and Laser Second Harmonic Generation. JEPT Letters 12, 16 (1970). 24. H. Mohwald, Direct characterization of monolayers at the air-water interface. Thin Solid Films 159, 1 (1988). 25. J. L. Oudar, Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. The Journal of Chemical Physics 67, 446 (1977). 26. B. F. Levine, C. G. Bethea, Second and third order hyperpolarizabilities of organic molecules. The Journal of Chemical Physics 63, 2666 (1975). 27. S. Pethkar, J. A. Dharmadhikari, A. A. Athawale, R. C. Aiyer, K. Vijayamohanan, Evidence for Second-Order Optical Nonlinearity in γ-Ray Induced Partially Cross-Linked Polyacrylonitrile. The Journal of Physical Chemistry B 105, 5110 (2001). 28. H.-Q. Xie, Z.-H. Liu, X.-D. Huang, J.-S. Guo, Synthesis and non-linear optical properties of four polyurethanes containing different chromophore groups. European Polymer Journal 37, 497 (2001). 29. A. Ulman et al., New sulfonyl-containing materials for nonlinear optics: semiempirical calculations, synthesis, and properties. Journal of the American Chemical Society 112, 7083 (1990). 30. G. T. Paloczi, Y. Huang, A. Yariv, J. Luo, A. K. Y. Jen, Replica-molded electro-optic polymer Mach–Zehnder modulator. Applied Physics Letters 85, 1662 (2004). 31. L. R. Dalton, Polymeric electro-optic materials: optimization of electro-optic activity, minimization of optical loss, and fine-tuning of device performance. Optical Engineering 39, 589 (2000). 32. A. Jen, K. Wong, V. Rao, K. Drost, Y. Cai, Thermally stable poled polymers: Highly efficient heteroaromatic chromophores in high temperature polymides. Journal of Electronic Materials 23, 653 (1994). 33. W.-J. Kuo, G.-H. Hsiue, R.-J. Jeng, Novel Guest−Host NLO Poly(ether imide) Based on a Two-Dimensional Carbazole Chromophore with Sulfonyl Acceptors. Macromolecules 34, 2373 (2001). 34. L. R. Dalton et al., Low (Sub-1-Volt) Halfwave Voltage Polymeric Electro-optic Modulators Achieved by Controlling Chromophore Shape. Science 288, 119 (2000). 35. J. D. Stenger-Smith et al., Main-hain, Syndioregic, High-glass Transition Temperature Polymer for Nonlinear Optics: Synthesis and characterization. Journal of Polymer Science Part A: Polymer Chemistry 31, 2899 (1993). 36. N. Tsutsumi, M. Morishima, W. Sakai, Nonlinear Optical (NLO) Polymers. 3. NLO Polyimide with Dipole Moments Aligned Transverse to the Imide Linkage. Macromolecules 31, 7764 (1998). 37. K. R. Yoon, N. M. Byun, H. Lee, Synthesis and characterization of carbazole-based nonlinear optical polymers possessing chromophores in the main or side chains. Synthetic Metals 157, 603 (2007). 38. N. P. Wang, T. M. Leslie, S. Wang, S. T. Kowel, Syntheses of Second-Order Nonlinear Optical Polyurethanes for Electrooptic Etalons. Chemistry of Materials 7, 185 (1995). 39. S. K. Yesodha, C. K. Sadashiva Pillai, N. Tsutsumi, Stable polymeric materials for nonlinear optics: a review based on azobenzene systems. Progress in Polymer Science 29, 45 (2004). 40. L. R. Dalton et al., Large and Stable Nonlinear Optical Effects Observed for a Polyimide Covalently Incorporating a Nonlinear Optical Chromophore. Chemistry of Materials 6, 104 (1994). 41. J. Luo, H. Ma, A. K. Y. Jen, Nanostructured functional dendrimers and polymers for photonics. Comptes Rendus Chimie 6, 895 (2003). 42. Z. Li, Q. Li, J. Qin, Some new design strategies for second-order nonlinear optical polymers and dendrimers. Polymer Chemistry 2, 2723 (2011). 43. Z. Li et al., Novel, side-on, PVK-based nonlinear optical polymers: Synthesis and NLO properties. Dyes and Pigments 84, 134 (2010). 44. F. Odobel et al., A new crosslinkable system based on thermal Huisgen reaction to enhance the stability of electro-optic polymers. Chem Commun, 1825 (2009). 45. F. Odobel et al., Preparation of a new electro-optic polymer cross-linkable via copper-free thermal Huisgen cyclo-addition and fabrication of optical waveguides by Reactive Ion Etching. ACS applied materials & interfaces 3, 2092 (2011). 46. F. Odobel et al., Scope and limitation of the copper free thermal Huisgen cross-linking reaction to stabilize the chromophores orientation in electro-optic polymers. Polymer Chemistry 2, 157 (2011). 47. B. K. Mandal, J. Kumar, J.-C. Huang, S. Tripathy, Novel photo-crosslinked nonlinear optical polymers. Die Makromolekulare Chemie, Rapid Communications 12, 63 (1991). 48. C. Xu et al., Stabilization of the dipole alignment of poled nonlinear optical polymers by ultrastructure synthesis. Macromolecules 26, 5303 (1993). 49. S.-S. Hou, P.-L. Kuo, Morphological, thermal and solid-state NMR study on a novel PMMA/crosslinked silicone semi-IPN. Polymer 42, 9505 (2001). 50. T. Ogoshi, H. Itoh, K.-M. Kim, Y. Chujo, Synthesis of Organic−Inorganic Polymer Hybrids Having Interpenetrating Polymer Network Structure by Formation of Ruthenium−Bipyridyl Complex. Macromolecules 35, 334 (2001). 51. S. Maaref et al., Fumaryl chloride and maleic anhydride–derived crosslinked functional polymers for nonlinear optical waveguide applications. Journal of Applied Polymer Science 92, 317 (2004). 52. Y. Wang et al., Synthesis and properties of novel crosslinkable second-order nonlinear optical polymers based on 2,3,4,5,6-pentafluorostyrene. Polymer International 53, 1106 (2004). 53. R. K. Singh, J. O. Stoffer, T. D. Flaim, D. B. Hall, J. M. Torkelson, Monohydroxy-hydrazone-functionalized thermally crosslinked polymers for nonlinear optics. Journal of Applied Polymer Science 92, 770 (2004). 54. H.-Q. Xie, X.-D. Huang, J.-S. Guo, Synthesis and properties of two kinds of nonlinear optical interpenetrating polymer networks. Journal of Applied Polymer Science 60, 537 (1996). 55. R.-J. Jeng, C.-C. Chang, C.-P. Chen, C.-T. Chen, W.-C. Su, Thermally stable crosslinked NLO materials based on maleimides. Polymer 44, 143 (2003). 56. H. Ma, A. K. Y. Jen, Functional Dendrimers for Nonlinear Optics. Advanced Materials 13, 1201 (2001). 57. H. Ma et al., Highly Efficient and Thermally Stable Electro-Optical Dendrimers for Photonics. Advanced Functional Materials 12, 565 (2002). 58. Y. V. Pereverzev, O. V. Prezhdo, L. R. Dalton, Structural origin of the enhanced electro-optic response of dendrimeric systems. Chemical Physics Letters 373, 207 (2003). 59. R. H. Kienle, A. G. Hovey, The Polyhydric Alcohol-Polybasic Acid Reaction. I. Glycerol-Phthalic Anhydride. Journal of the American Chemical Society 51, 509 (1929). 60. P. J. Flory, Molecular Size Distribution in Three Dimensional Polymers. VI. Branched Polymers Containing A—R—Bf-1 Type Units. Journal of the American Chemical Society 74, 2718 (1952). 61. Y. H. Kim, O. W. Webster, Water soluble hyperbranched polyphenylene: "a unimolecular micelle?". Journal of the American Chemical Society 112, 4592 (1990). 62. Y. H. Kim, Hyperbranched polymers 10 years after. Journal of Polymer Science Part A: Polymer Chemistry 36, 1685 (1998). 63. B. Voit, New developments in hyperbranched polymers. Journal of Polymer Science Part A: Polymer Chemistry 38, 2505 (2000). 64. D. A. Tomalia, J. M. J. Frechet, Discovery of dendrimers and dendritic polymers: A brief historical perspective*. Journal of Polymer Science Part A: Polymer Chemistry 40, 2719 (2002). 65. Y. Zhang, T. Wada, H. Sasabe, A new hyperbranched polymer with polar chromophores for nonlinear optics. Polymer 38, 2893 (1997). 66. J. Y. Do, S. K. Park, J.-J. Ju, S. Park, M.-H. Lee, Improved Electro-Optic Effect by Hyperbranched Chromophore Structures in Side-Chain Polyimide. Macromolecular Chemistry and Physics 204, 410 (2003). 67. S. H. Kang et al., A Hyperbranched Aromatic Fluoropolyester for Photonic Applications. Macromolecules 36, 4355 (2003). 68. B. Z. Tang et al., Facile Synthesis, Large Optical Nonlinearity, and Excellent Thermal Stability of Hyperbranched Poly(aryleneethynylene)s Containing Azobenzene Chromophores. Macromolecules 39, 1436 (2006). 69. Z. Li et al., New Azo-Chromophore-Containing Hyperbranched Polytriazoles Derived from AB2 Monomers via Click Chemistry under Copper(I) Catalysis. Macromolecules 42, 1589 (2009). 70. Z. Li et al., New series of AB2-type hyperbranched polytriazoles derived from the same polymeric intermediate: Different endcapping spacers with adjustable bulk and convenient syntheses via click chemistry under copper(I) catalysis. Journal of Polymer Science Part A: Polymer Chemistry 49, 1977 (2011). 71. F. Odobel et al., Synthesis and Nonlinear Optical Properties of a Peripherally Functionalized Hyperbranched Polymer by DR1 Chromophores. ACS applied materials & interfaces 1, 1799 (2009). 72. F. Odobel et al., Synthesis and second-order nonlinear optical properties of a crosslinkable functionalized hyperbranched polymer. European Polymer Journal 48, 116 (2012). 73. K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, Electrooptic phase modulation and optical secondharmonic generation in coronapoled polymer films. Applied Physics Letters, 1800 (1968). 74. J. W. Wu, J. F. Valley, S. Ermer, E. S. Binkley, J. T. Kenney, Thermal stability of electrooptic response in poled polyimide systems. Applied Physics Letters, 225 (1991). 75. K. Y. Wong, A. K. Jen, Thermally stable poled polyimides using heteroaromatic chromophores. Journal of Applied Physics 75, 3308 (1994). 76. S. Dandapani, D. P. Curran, Fluorous Mitsunobu reagents and reactions. Tetrahedron 58, 3855 (2002). 77. D. Yu, L. Yu, Design and Synthesis of Functionalized Polyimides for Second-Order Nonlinear Optics. Macromolecules 27, 6718 (1994). 78. H. Saadeh, D. Yu, L. M. Wang, L. P. Yu, Highly stable, functionalized polyimides for second order nonlinear optics. Journal of Materials Chemistry 9, 1865 (1999). 79. T.-A. Chen, A. K. Y. Jen, Y. Cai, Facile Approach to Nonlinear Optical Side-Chain Aromatic Polyimides with Large Second-Order Nonlinearity and Thermal Stability. Journal of the American Chemical Society 117, 7295 (1995). 80. W. Leng, Y. Zhou, Q. Xu, J. Liu, Synthesis and Characterization of Nonlinear Optical Side-Chain Polyimides Containing the Benzothiazole Chromophores. Macromolecules 34, 4774 (2001). 81. H. L. Hampsch, J. Yang, G. K. Wong, J. M. Torkelson, Dopant orientation dynamics in doped second-order nonlinear optical amorphous polymers. 2. Effects of physical aging on poled films. Macromolecules 23, 3648 (1990). 82. O. Mitsunobu, The Use of Diethyl Azodicarboxylate and Triphenylphosphine in Synthesis and Transformation of Natural Products. Synthesis, 1 (1981). 83. G. Maglio, R. Palumbo, M. Tortora, Aromatic poly(benzoxazole)s from multiring diacids containing (phenylenedioxy)diphenylene or (naphthalenedioxy)diphenylene groups: Synthesis and thermal properties. Journal of Polymer Science Part A: Polymer Chemistry 38, 1172 (2000). 84. C.-P. Yang, Y.-Y. Su, S.-J. Wen, S.-H. Hsiao, Highly optically transparent/low color polyimide films prepared from hydroquinone- or resorcinol-based bis(ether anhydride) and trifluoromethyl-containing bis(ether amine)s. Polymer 47, 7021 (2006). 85. F. Kurzer, K. Douraghi-Zadeh, Advances in the Chemistry of Carbodiimides. Chemical Reviews 67, 107 (1967). 86. A. Williams, I. T. Ibrahim, Carbodiimide chemistry: recent advances. Chemical Reviews 81, 589 (1981). 87. H. Ulrich, Chemistry and Technology of Isocyanate. John Wiley & Sons New York, (1996). 88. Mikoz.xl, M. lajczyk, Kiez.xl, P. lbasiński, Recent developments in the carbodiimide chemistry. Tetrahedron 37, 233 (1981). 89. J. J. Monagle, T. W. Campbell, H. F. McShane, Carbodiimides. II. Mechanism of the Catalytic Formation from Isocyanates. Journal of the American Chemical Society 84, 4288 (1962). 90. L. M. F. Alberino, J. W. J., Polycarbodiimide from 4, 4''-methylenebis (phenyl isocyanate) and certain carbocylic monoisocyantes. U.S. Patent US3929733 (1975). 91. L. M. Alberino, W. J. Farrissey, A. A. R. Sayigh, Preparation and properties of polycarbodiimides. Journal of Applied Polymer Science 21, 1999 (1977). 92. K. Wagner, K. Findeisen, W. Schafer, W. Dietrich, α,ω-Diisocyanatocarbodiimides, -Polycarbodiimides, and Their Derivatives. Angewandte Chemie International Edition in English 20, 819 (1981). 93. D. F. DeTar, R. Silverstein, Reactions of Carbodiimides. I. The Mechanisms of the Reactions of Acetic Acid with Dicyclohexylcarbodiimide1,2. Journal of the American Chemical Society 88, 1013 (1966). 94. K.-L. Wei, C.-H. Wu, W.-H. Huang, J.-J. Lin, S. A. Dai, N-Aryl Acylureas as Intermediates in Sequential Self-Repetitive Reactions To Form Poly(amide−imide)s. Macromolecules 39, 12 (2005). 95. D. A. Wicks, Z. W. Wicks Jr, Blocked isocyanates III: Part A. Mechanisms and chemistry. Progress in Organic Coatings 36, 148 (1999). 96. H. G. Fravel, T. W. Regulski, M. R. Thomas, Preparation, polymerization, and evaluation of blocked isocyanatoethyl methacrylate. Industrial & Engineering Chemistry Product Research and Development 23, 586 (1984). 97. D. S. Tjin A-Lim, A. H. M. Schotman, R. Addink, K. Nijenhuis, W. J. Mijs, Crosslinking reactions with blocked carbodiimides. Polymer Bulletin 35, 9 (1995). 98. C.-W. Chen, C.-C. Cheng, S. A. Dai, Reactive Macrocyclic Ether−Urethane Carbodiimide (MC−CDI):  Synthesis, Reaction, and Ring-Opening Polymerization (ROP). Macromolecules 40, 8139 (2007). 99. S. A. Dai, J.-J. lin, K.-L. Wei, C.-H. Wu, W.-H. Huang, Synthesis of Acrylurea from arylisocyanate for Use as Intermediate in Novel SSRR to Amide-Imide and Their Polymers. U.S. Patent, US20070282078 (2007). 100. 汪乙嘉, 由Poly(acylurea)中間體製備高溫熱穩定之二次非線性光學聚醯胺-醯亞胺高分子及其特性分析. 國立中興大學化學工程研究所碩士論文, , (2005). 101. H.-L. Chang et al., Thermally stable NLO poly(amide–imide)s via sequential self-repetitive reaction. Polymer 48, 2046 (2007). 102. G.-Y. Lee, H.-N. Jang, J.-Y. Lee, Synthesis and properties of novel Y-type nonlinear optical polyimides with high thermal stability of second harmonic generation. Journal of Polymer Science Part A: Polymer Chemistry 46, 3078 (2008). 103. J.-Y. Lee, J.-H. Kim, W.-T. Jung, Y. Park, Synthesis and nonlinear optical properties of novel Y-type polyurethanes with high thermal stability of dipole alignment. Journal of Materials Science 42, 3936 (2007). 104. Z. Li, Y. Zhao, J. Zhou, Y. Shen, Synthesis and characterization of two series of polyimides as nonlinear optical materials. European Polymer Journal 36, 2417 (2000). 105. Y. S. Srinath Kalluri, William H. Steier, Zhixin Yang, Chengzeng Xu et al., Improved poling and thermal stability of solgel nonlinear optical polymers. Applied Physics Letter 65, 2615 (1994). 106. M. Faccini et al., Enhanced poling efficiency in highly thermal and photostable nonlinear optical chromophores. Journal of Materials Chemistry 18, 2141 (2008). 107. J. Hao, M. Jikei, M.-a. Kakimoto, Preparation of Hyperbranched Aromatic Polyimides via A2 + B3 Approach. Macromolecules 35, 5372 (2002/07/01, 2002). 108. M. Barikani, S. M. Ataei, Preparation and properties of polyimides and polyamide-imides from diisocyanates. Journal of Polymer Science Part A: Polymer Chemistry 37, 2245 (1999). 109. W. Shi et al., Measurement of the optical transmission modes and losses of the poled guest–host polymer NAEC/PEK-c planar waveguides. Optics and Lasers in Engineering 33, 21 (2000). 110. W. Shi et al., Poling optimization and optical loss measurement of the polyetherketone polymer films. Solid State Communications 116, 67 (2000). 111. W. Shi et al., Thermal stability and transmission losses of the poled polyimide side-chain thin films. Optics Communications 183, 299 (2000). 112. S. Hecht, J. M. J. Frechet, Dendritic Encapsulation of Function: Applying Nature''s Site Isolation Principle from Biomimetics to Materials Science. Angewandte Chemie International Edition 40, 74 (2001). 113. J. M. J. Frechet, C. J. Hawker, I. Gitsov, J. W. Leon, Dendrimers and Hyperbranched Polymers: Two Families of Three-Dimensional Macromolecules with Similar but Clearly Distinct Properties. Journal of Macromolecular Science, Part A 33, 1399 (1996/10/01, 1996). 114. M. H. Jean M. J. Frechet, Ivan Gitsov, Sadahito Aoshima, Marc R. Leduc, R. Bernard Grubbs, Self-Condensing Vinyl Polymerization: An Approach to Dendritic Materials. Science 269, 1080 (1995). 115. H.-C. Tsai, I. C. Yu, P.-H. Chang, D.-C. Yu, G.-H. Hsiue, Novel π-Electron Extension System via Chromophores Self-Polymerization to Enhance the NLO Efficiency. Macromolecular Rapid Communications 28, 334 (2007). 116. R. Centore et al., Nonlinear optical properties of regioregular main-chain polyesters. Journal of Polymer Science Part A: Polymer Chemistry 45, 2719 (2007). 117. Z. S. Petrović, I. Javni, A. Waddon, G. Banhegyi, Structure and properties of polyurethane–silica nanocomposites. Journal of Applied Polymer Science 76, 133 (2000).en_US
dc.identifier.urihttp://hdl.handle.net/11455/3245-
dc.description.abstract二次非線性光學高分子在光學元件的實際的應用上,需改善發色團基的極化效率及提升材料熱穩定性。本研究以新式的連續自我反覆反應(Sequential Self-Repetitive Reaction ; SSRR)製備了兩系列高熱穩定性之超分枝狀聚醯亞胺高分子,藉由超分枝狀特有的三維與多孔性結構來將其中的發色團基相互區隔,使系統在含有高發色團基濃度時能夠減少聚集且維持良好的極化率,提高其非線性光學特性。 本研究以雙異氰酸鹽 (4,4’-methylene diphenylisocyanate;MDI) 單體作為起始原料來製備高分子,以催化劑環磷化物(DMPO),將異氫酸鹽全數二量化形成poly-carbodiimide(poly-CDI),並添加含有雙羧酸官能基之發色團基(DNDI)及含有三羧酸官能基之單體(TA),進行連續自我反覆反應後,製備超分枝狀聚醯亞胺高分子(HBPI-DNDI42, HBPI-DNDI22, HBPI-DNDI23)。為了的增加材料的熱穩定性與光電性質,本研究亦利用相同的製程製備了另一系列含有發色團基(DACDI) 的超分枝狀聚醯亞胺高分子(HBPI-DACDI42, HBPI-DACDI22, HBPI-DACDI23)。此外,為了能明瞭的探討超分枝結構在材料中的效應,本研究以雙羧酸BA單體取代三羧酸TA單體製備了相對應的線性聚醯亞胺高分子材料(LPI-DNDI, LPI-DACDI )作為比較探討。 所製備之超分枝狀聚醯亞胺高分子材料均展現良好的有機可溶性且成膜性佳,而各系列材料的玻璃轉移溫度約在144-212 oC,光電數值約在14-37 pm/V (830 nm)。相較於線性高分子材料,兩系列(DNDI及DACDI )超分枝狀聚醯亞胺高分子均展現較好的熱穩定性及較高的電光係數。於導入不同發色團基的部分,DNDI系列之材料其電光係數值較DACDI的電光係數值高而DACDI系列的材料則具有較好的熱性質。此外,材料在120 oC操作溫度下有優越的長時間熱穩定性,而超分枝狀材料也因其三維立體結構的多孔特性使其擁有相對較低的光學損失值。zh_TW
dc.description.abstractFor practical applicability, Second-order nonlinear optical (NLO) polymers must exhibit large EO coefficients (r33) with good temporal stability when their devices are operated at elevated temperatures. To achieve these features, we introduced the concept of the three-dimensional spatial separation of the chromophores endowing the polymers with favorable site-isolation effects and developed two series of thermally stable nonlinear optical hyperbranched polyimides via a sequential self-repetitive reaction process. The polyimides were synthesized by the reaction of 4,4’-methylenediphenyl isocyanate (MDI),chromophore 2,4-diamino-4’- (4-nitrophenyl-diazenyl)-azobenzene derivative containing diimde-di(ester-acid)(DNDI), and 1,1,1-tris (4-carboxy-3- methoxycarbonylphenoxy)ethane (TA). Polycarbodiimide (poly-CDI) was first synthesized from MDI. Two acid-ester compounds (DNDI and TA) was then reacted with poly-CDI to form poly(N-acylurea). After the curing process, N-acylurea moiety was converted to ester-amide structure via SSRR and further subjected to a ring-closure reaction to form DNDI containing hyperbranched NLO polyimides (HBPI-DNDI42, HBPI-DNDI22, and HBPI-DNDI23). In order to further enhance the thermal stability and EO coefficient, the other chromophre, bis(4-aminophenyl(4-(4-nitrophenyl) -diazenyl)-phenyl)amine derivative containing diimde-di(ester-acid) (DACDI) was also incorporated into the the polyimide to form DACDI containing hyperbranched NLO polyimides (HBPI-DACDI42, HBPI-DACDI22, and HBPI-DNDI23). In addition, two linear polyimides (LPI-DNDI and LPI-DACDI) were synthesized via the same reaction process for the sake of comparison. The resulting NLO hyperbranched polymers exhibited excellent organosolubility with Tgs of 144-212 oC, which is favorable for the fabrication of high quality optical thin films with electro-optical coefficients, r33 of 14-37 pm/V (830 nm). Compare with linear polyimides, both two series hyperbranched polymers possessed the higher stability and larger EO coefficients. This result revealed that the site isolation effect derived from the hyperbranched structures enhanced the NLO properties of polyimides. Excellent long term stability at 120oC was obtained for two series of hyperbranched NLO polyimides Moreover, the uniform void distribution of hyperbranched structure resulted in lower optical losses relative to that of the corresponding linear polyimide.en_US
dc.description.tableofcontents目錄 誌謝 i 中文摘要 ii 英文摘要 iii 目錄 v 圖目錄 vii 表目錄 ix 一、非線性光學簡介 1 1.1前言 1 1.2非線性光學之涵義 2 1.3 非線性光學現象 3 1.3.1二次(階)非線性光學效應 4 1.3.2三次(階)非線性光學效應 5 1.4波克效應(Pockels effect) 6 1.4.1波克效應之原理 6 1.4.3橢球式方法(ellipsometric method)的原理 8 1.4.4二次非線性光學材料的應用 13 二、文獻回顧與研究動機 15 2.1二次非線性光學材料介紹 15 2.1.1無機非線性光學材料 15 2.1.2有機非線性光學材料 15 2.2聚醯亞胺非線性光學材料之介紹 28 2.2.1聚醯亞胺光學材料之合成 28 2.2.2連續自我反覆反應簡介 30 2.2.3 藉由SSRR途徑合成非線性光學高分子之簡介 37 2.2.4即時熟化-極化(In-situ curing/poling)非線性光學高分子之簡介 38 2.3 研究動機 40 三、實驗內容 42 3.1 實驗概述 42 3.2 實驗藥品 44 3.2.1藥品 44 3.2.2有機溶劑 45 3.3 實驗儀器 46 3.3.1分析儀器 46 3.4 單體之製備 48 3.4.1 單體BA的合成 48 3.4.2 單體TA之合成 49 3.4.3 含發色基團二醯亞胺基雙酸單體(DNDI)的合成 51 3.4.3.2 含發色基團二醯亞胺基雙酸單體(DNDI)的合成 52 3.4.5 含發色團基二醯亞胺雙酸單體DACDI之合成 53 3.5 非線性光學高分子材料之製備 55 3.5.1非線性光學高分子LPI之合成 55 3.5.2光學高分子HBPI之合成 56 3.6二次非線性光學性質之檢測 58 3.6.1高分子薄膜之製備: 58 3.6.2 高分子薄膜之極化配向排列: 58 3.6.3電光係數(Electro-optic coefficient)之量測: 59 3.6.4極化條件之最適化: 60 3.6.5 Optical loss之量測 60 四、結果與討論 62 4.1 單體之結構鑑定與分析 62 4.1.1 BA之鑑定與分析 62 4.1.2 TA之鑑定與分析 70 4.1.3 DNDI之鑑定與分析 81 4.1.4 DACDI之鑑定與分析 86 4.2線性及超分枝狀非線性光學聚醯亞胺高分子材料結構鑑定 92 4.2.1 DNDI系列之非線性光學聚醯亞胺高分子材料結構鑑定 92 4.2.2 DACDI系列之非線性光學聚醯亞胺高分子材料結構鑑定 92 4.3線性及超分枝狀非線性光學聚醯亞胺高分子材料之分子量量測 94 4.4線性及超分枝狀非線性光學聚醯亞胺高分子材料之熱性質分析 95 4.5線性及超分枝狀非線性光學聚醯亞胺高分子材料之電光性質檢測 99 4.6線性及超分枝狀非線性光學聚醯亞胺高分子材料之動態及長時間熱穩定性之研究 101 五、結論 104 六、參考文獻 105   圖目錄 圖1- 1 p波與s波的光程差示意圖 8 圖1- 2 Mach-Zehnder光調制器構造圖(15) 13 圖1- 3 倍頻裝置構造圖 14 圖1- 4 波克盒構造圖(21) 14 圖2- 1單體MNA之結構 16 圖2- 2非線性光學材料發色團基之基本結構圖 17 圖2- 3非線性光學材料電場極化示意圖 17 圖2- 4二次非線性光學高分子之種類示意圖 18 圖2- 5二維發色團基CzPhSO2與可溶性聚亞醯胺結構示意圖(33) 19 圖2- 6高μβ值之發色團基結構示意圖(34) 19 圖2- 7含有剛硬結構之主鏈型二次非線性光學材料示意圖(36) 20 圖2- 8發色團基接枝於聚亞醯胺主鏈上之結構示意圖(4) 20 圖2- 9側鏈型二次非線性光學材料示意圖(40) 21 圖2- 10側鏈型二次非線性光學材料自組裝為假柱狀示意圖(41) 21 圖2- 11 導入阻隔團基之側鏈型二次非線性光學材料示意圖(42) 22 圖2- 12發色團基導入carbazole防止聚集示意圖 22 圖2- 13側鏈含有可熱交聯官能基之二次非線性光學材料(46) 23 圖2- 14規則型樹枝狀二次非線性光學分子(58) 24 圖2- 15 A2B3型超分枝狀二次非線性光學材料(68) 25 圖2- 16利用click chemistry合成一新型AB2非線性光學材料(70) 26 圖2- 17將發色團基導入超分枝聚醯亞胺形成二次非線性材料(71) 27 圖2- 18超分枝狀非線性光學材料在末端導入可交聯之官能基(72) 27 圖2- 19聚醯亞胺高分子之合成方式 29 圖2- 20 二次非線性光學聚醯亞胺高分子常見之合成方式 30 圖2- 21碳二醯胺常見的合成方式 31 圖2- 22各種氧化磷觸媒衍生物 32 圖2- 23異氰酸鹽在加溫下之衍生物 33 圖2- 24 Poly-CDI衍生反應示意圖 33 圖2- 25 DCC與羧酸反應示意圖 34 圖2- 26 CDI與羧酸反應示意圖 35 圖2- 27利用acylurea作為異氰酸鹽封閉基之反應示意圖 35 圖2- 28 SSRR之反應示意圖 36 圖2- 29經由SSRR製備poly(amide-imide)之反應示意圖 37 圖2- 30含發色團基poly(N-acylurea)s合成示意圖 37 圖2- 31不同發色團基鍵結形式:(a)主鏈型;(b)側鏈型;(c)Y-type 38 圖2- 32偶氮發色團基 (a) DNDA (b) DAC之結構圖 41 圖3- 1實驗流程圖 42 圖3- 2單體 TPE-4CN之合成圖 48 圖3- 3單體 TPE-4COOH之合成圖 49 圖3- 4單體 BA 之合成圖 49 圖3- 5單體TPE-6CN之合成圖 50 圖3- 6單體 6-COOH 之合成圖 50 圖3- 7單體 TPE-3A之合成圖 51 圖3- 8單體 TA 之合成圖 51 圖3- 9發色團基DNDA合成流程圖 52 圖3- 10含發色基團二醯亞胺雙酸單體DNDI之製備流程圖 53 圖3- 11發色團基DAC之合成圖 53 圖3- 12含發色基團二醯亞胺雙酸單體DACDI之製備流程圖 54 圖3- 13非線性光學高分子LPI-DNDI之合成流程圖 55 圖3- 14非線性光學高分子HPPI-DNDI之合成流程圖 57 圖3- 15即時接觸式極化裝置示意圖 58 圖3- 16電光係數r33檢測裝置示意圖 60 圖3- 17 Optical loss量測裝置示意圖 61 圖3- 18 Optical loss計算範例 61 圖4- 1單體 TPE-4CN 之合成圖 62 圖4- 3單體 TPE-4CN之1H NMR光譜圖 63 圖4- 4 單體TPE-4CN之 FAB-MASS 64 圖4- 5單體 TPE-4COOH 之合成圖 65 圖4- 6合成TPE-4COOH之 FT-IR 監控圖 66 圖4- 7單體TPE-4COOH之1H NMR光譜圖 66 圖4- 8單體 BA 之合成圖 68 圖4- 9 BA之三種不同異構物 68 圖4- 10合成BA 之 FT-IR 監控圖 68 圖4- 11單體 BA 之 1H NMR光譜圖 69 圖4- 12 單體 BA 之 FAB-MASS 69 圖4- 13單體TPE-6CN之合成圖 70 圖4- 14合成TPE-6CN之 FT-IR 監控圖 71 圖4- 15單體TPE-6CN之1H NMR光譜圖 71 圖4- 16 單體TPE-6CN之 FAB-MASS 72 圖4- 17單體TPE-6COOH之合成圖 73 圖4- 18 合成TPE-6COOH之 FT-IR 監控圖 74 圖4- 19單體 TPE-6COOH之 1H NMR光譜圖 74 圖4- 20單體 TPE-3A之合成圖 75 圖4- 21 合成TPE-3A之 FT-IR 監控圖 76 圖4- 22 單體 TPE-3A之1H NMR光譜圖 76 圖4- 23單體TPE-3A 之FAB-MASS 77 圖4- 24單體 TA 之合成圖 78 圖4- 25 TA之四種不同異構物 79 圖4- 26 合成TA 之 FT-IR 監控圖 79 圖4- 27單體 TA 之 1H NMR光譜圖 80 圖4- 28單體 TA 之LC-MASS 80 圖4- 29發色團基DNDA合成流程圖 81 圖4- 30發色團基DNDA之FT-IR結構鑑定圖 82 圖4- 31發色團基DNDA之1H-NMR光譜圖 82 圖4- 32含發色基團二醯亞胺雙酸單體DNDI之製備流程圖 83 圖4- 33 DNDI之FT-IR圖 84 圖4- 34 DNDI之1H-NMR光譜圖 84 圖4- 35單體 DNDI之LC-MASS 85 圖4- 36發色團基DAC合成流程圖 86 圖4- 37 合成DAC之FT-IR光譜圖 87 圖4- 38 DAC之1H-NMR光譜圖 87 圖4- 39 DAC之MASS鑑定圖譜 88 圖4- 40含發色基團二醯亞胺雙酸單體DACDI之製備流程圖 89 圖4- 41 DACDI之FT-IR光譜圖 90 圖4- 42 DACDI之NMR光譜圖 90 圖4- 43 DACDI之MASS鑑定圖譜 91 圖4- 44 FT-IR分析圖:(a)PCDI;(b)HBPI-DNDI23 92 圖4- 45 FT-IR分析圖:(a)PCDI;(b)HBPI-DACDI23 93 圖4- 46 DNDI系列的非線性光學材料之TGA圖 96 圖4- 47 DACDI系列的非線性光學材料之TGA圖 96 圖4- 48 DNDI系列的非線性光學材料之DSC圖 97 圖4- 49 DACDI系列的非線性光學材料之DSC圖 97 圖4- 50 DNDI系列的非線性光學材料之動態熱穩定性測試 102 圖4- 51 DACDI系列的非線性光學材料之動態熱穩定性測試 102 圖4- 52 DNDI系列的非線性光學材料之長時間熱穩定性測試 103 圖4- 53 DACDI系列的非線性光學材料之長時間熱穩定性測試 103 表目錄 表3- 1線性或超分枝狀非線性光學聚醯亞胺高分子材料組成表(莫耳比) 43 表4- 1單體TPE-4CN之元素分析鑑定結果 64 表4- 2 TPE-6CN之元素分析鑑定結果 72 表4- 3 TPE-3A之元素分析儀鑑定結果 77 表4- 4 TA 之元素分析儀鑑定結果 80 表4- 5 DNDI 之元素分析鑑定結果 85 表4- 6 DAC之元素分析鑑定結果 88 表4- 7 DACDI之元素分析鑑定結果 91 表4- 8 非線性光學高分子材料DNDI系列之分子量分布 94 表4- 9非線性光學高分子材料DACDI系列之分子量分布 94 表4- 10線性及超分枝狀非線性光學聚醯亞胺高分子材料之熱性質分析 98 表4- 11線性及超分枝狀非線性光學聚醯亞胺高分子材料之光電性質分析 100zh_TW
dc.language.isozh_TWen_US
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108201213362200en_US
dc.subject非線性光學zh_TW
dc.subjectNLOen_US
dc.subject超分枝狀zh_TW
dc.subject連續自我反覆反應zh_TW
dc.subjectHyperbrancheden_US
dc.subjectSSRRen_US
dc.title經連續自我反覆反應製備超分支聚醯亞胺材料及其非線性光學特性之研究zh_TW
dc.titleSequential Self-Repetitive Reaction Toward Full Polyimides Featuring Hyperbranched Structures With Stable Optical Nonlinearity.en_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:化學工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.