Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3249
標題: 聚碳酸酯/聚對苯二甲酸乙二酯無鹵防火聚摻合物研究
Study of Halogen-free Flame Retardant Polycarbonate /Poly(ethylene terephthalte) Blends
作者: 羅育儒
Luo, Yu-Ru
關鍵字: 聚碳酸酯
Polycarbonate
聚對苯二甲酸乙二酯
無鹵耐燃
磷酸鹽
Poly(ethylene terephthalte)
Flame retardant
Aluminum phosphate salt
出版社: 化學工程學系所
引用: 1. 鐘松政, 化工資訊與商情, 工業技術研究院-材料與化工研究所, 第59期, 第18頁 (2008) 2. 王春山, 謝正悅, 林慶炫, 知識創新, 非鹵素難燃電子材料研究, 科學發展月刊, 第5卷, 第1頁至第4頁 (2000) 3. C. Lei, D. Chen, J. Appl. Polym. Sci., 109, 1099-1104 (2008) 4. 沈永清, 張信貞, 莊學平, 張榮樹, 化工資訊月刊, 高分子難燃機 構及原理, 工業技術研究院-化學工業研究所, 第9卷, 第2期, 第 15頁至第31頁 (1995) 5. 歐育湘, 李建軍, 阻燃劑-製造、性能及應用, 化工工業出版社, 北 京, 第一版 (2006) 6. U. Braun, B. Schartel, Macromol. Mater. Eng., 293, 206-217 (2008) 7. 林文義, “聚醯胺/無鹵耐燃劑/無機物奈米複合材料製備與物性分 析”, 中興大學化學工程研究所碩士論文 (2010) 8. J. J. Herpels, L. Mascia, Eur. Polym. J., 26, 997-1003 (1990) 9. F. Elmaghor, L. Zhang, R. Fan, H. Li, Polymer, 45, 6719-6724 (2004) 10. N. Mekhilef, et al., Polym. Eng. & Sci., 32, p.894 -902 (1992) 11. 唐煌, S. V. Levchik, 塑膠助劑, 廣東化工, 廣東, 第2期, 第18頁至第22頁 (2006) 12. Z. Tang, Y. Li, Y. J. Zhang, Polym. Degrad. Stab., 97, 638-644 (2012) 13. D. Q. Hoang, J. Kim, B. N. Jang, Polym. Degrad. Stab., 93, 2042-2047 (2008) 14. Y. Okano, M. Tanigawa, US Patent, 5,475,079 (1995) 15. P. J. McCloskey, W. W. Reilly, US Patent, 6,723,823 B2 (2004) 16. C. Guerrero, T. Lozano, V. Gonzalez, E. Arroyo, J. Appl. Polym. Sci., 82, 1382-1390 (2001) 17. U. Braun, H. Bahr, H. Sturm, B. Schartel, Polym. Adv. Tech., 19, 680-692 (2008) 18. E. Gallo, U. Braun b, B. Schartel, P. Russo, D. Acierno, Polym. Degrad. Stab., 94, 1245-1253 (2009) 19. T. Saito, US Patent, 3,702,878 (1972) 20. C. S. Wang, J. Y. Shieh, Y. M. Sun, J. Appl. Polym. Sci., 70, 1959-1964 (1998) 21. S. J. Chang, F. C. Chang, Polym. Eng. & Sci., 38, 1471-1481 (1998) 22. C. S. Wang, J.Y. Shieh, Y. M. Sun, Eur. Polym. J., 35, 1465-1472 (1999) 23. R. Sablong, R. Duchateau, C. Koning, D. Pospiech, Polym. Degrad. Stab., 96, 334-341 (2011) 24. O. Fischer, D. Pospiech, A. Korwitz, K Sahre, Polym. Degrad. Stab., 96, 2198-2208 (2011) 25. S. Brehme, B. Schartel, J. Goebbels, O. Fischer, Polym. Degrad. Stab., 96, 875-884 (2011) 26. W. Yang, L. Song, Y. Hu, H. Lu, Composites: Part B, 42, 1057-1065 (2011) 27. J. Devaux, P. Godard, Polym. Eng. & Sci., 22, 229- 233 (1982) 28. P. Godard, J. M. Dekonkinck, J. Polym. Sci., Part A: Polym. Chem., 24, 3301-3313 (1986) 29. T. Suzuki, H. Tanaka, Polymer, 30, 1287-1297 (1989) 30. W. G. Zheng, Z. H. Wan, Polym. Int., 34, 301-306 (1994) 31. M. V. Pellow-Jarman, P. J. Hendra, Spectrochim. Acta, Part A, 51, 2107-2116 (1995) 32. V. N. Ignatov, C. Carraro, Polymer, 38, 195-200 (1997 ) 33. V. N. Ignatov, C. Carraro, Polymer, 38, 201-205 (1997 ) 34. Y. Kong, J. N. Hay, Polymer, 43, 1805-1811 (2002) 35. P. Marchese, A. Celli, Macromol. Chem. Phys., 203, 695-704 (2002) 36. L. C. Mendes, A. M. Giornes, Int. J. Polymer. Mater., 56, 257-272 (2007) 37. L. C. Mendes, P. S. C. Pereira, Macromol. Symp., 299-300, 183-189 (2011) 38. M. F. Cheung, A. Golovoy, Ind. Eng. Chem. Res., 28, 476- 481 (1989) 39. A. Golovoy, M. F. Cheung, Polym. Eng. & Sci., 29, 1226-1231 (1989) 40. M. F. Cheung, A. Golovoy, J. App. Polym. Sci., 40, 977-987 (1990) 41. X. Tang, W. Guo, G. Yin,Wiley InterScience, 104, 2602-2607 (2007) 42. H. Bai, Y. Zhang, X. Zhang, Polym. Test., 24, 235-240 (2005) 43. Y. Peng, W. Guo, P. Zhu, J. Applied Polym. Sci., 109, 483-491(2008) 44. X. Tang, W. Guo, G. Yin, Polym. Bull., 58, 479-488 (2007) 45. B. Swoboda, S. Buonomo, E. Leroy, Polym. Degrad. Stab., 92, 2247-2256 (2007) 46. B. Swoboda, S. Buonomo, E. Leroy, Polym. Degrad. Stab., 93, 910-917 (2008) 47. S. Liu, L. Jiang, Z. Jiang, J. Zhao, Y. Fu, Polym. Adv. Tech., 22, 2392-2402 (2011) 48. M. Weber, I. Hennig, US Patent, 6,784,233 B1 (2004) 49. J. C. Pearson, D. S. McWilliams, G. I. JR., M. A. Weaver, US Patent, 2005/0277713 A1 (2005) 50. A. Nanasawa, S. Takayama, K. Takeda, J. Applied. Polym. Sci., 66, 2269-2277 (1997) 51. P. P. Edyta, M. Andrzejak, P. Kafarski, Journal of Raman Specroscopy, 42, 958- 979 (2011)
摘要: 本研究中使用聚碳酸酯/聚對苯二甲酸乙二酯(polycarbonate/poly ethylene terephthalte, PC/PET) 透過熔融混練法製備無鹵耐燃合膠,添加的無鹵耐燃劑主要分為兩類: 次磷酸鋁鹽 (aluminum phosphinate) OP1230與亞磷酸鋁鹽 (aluminum phosphonate) EXY。研究目的主要是PC與PET無鹵防火聚摻合物 (halogen-free flame retardant polymer) 之加工性及物理性質探討。此材料可廣泛應用於電子、汽車及建材等產品。 PC與PET酯交換反應發生於熔融狀態下,由紅外光光譜 (infrared spectrum, IR) 分析中可觀察到1070 cm-1 之芳香酯振動峰肩峰證實有酯交換反應發生。微差掃描式熱分析儀(DSC)結果顯示因酯交換反應使PET相玻璃轉移溫度(Tg) 提升、PC相Tg下降,此結果與動態機械分析儀(DMA)相符。 使用OP1230加入於PC,其中的鋁離子會造成PC裂解,使PC之Tg下降。另一方面,OP1230不影響PET之Tg、Tm,但DSC第一段降溫中發現OP1230之冷卻結晶峰,代表OP1230於冷卻時析出於PET相,而析出的OP1230會造成PET材質變脆。添加耐衝擊改質劑:乙烯-甲基丙烯酸缩水甘油酯-丙烯酸丁酯共聚物(ethylene glycidyl methacrylate butylacrylate terpolymer, PTW)與PET和OP1230之三成分混練研究中,利用PTW有助於OP1230分散於PET中達阻燃與增韌之效果,但OP1230會造成PTW裂解導致PET/PTW/OP1230產物易脆。 PC/PET/OP1230無鹵耐燃合膠呈發泡產物,IR分析中可見1070 cm-1 之芳香酯振動峰肩峰證實熔融混練時有酯交換反應發生,樣品經300℃、氮氣環境下熱處理5分鐘後,IR結果顯示PC之1773 cm-1 C=O拉伸振動峰消失,代表OP1230中的鋁離子造成PC裂解,導致PC與PET過度酯交換,故DSC第一段升溫PC/PET/OP1230無鹵耐燃合膠僅具106.4℃之單一Tg且不具PET熔融峰。為了抑制OP1230中鋁離子造成的PC裂解現象,嘗試使用具酸根高分子如Engage-g-MA與離子聚合物 (ionomer) Surlyn,或使用具孤對電子 (nonpaired) 化合物:胺基改質苯乙烯-乙烯-丁烯-苯乙烯共聚物(styrene-ethylene-butylene-styrene copolymer, SEBS) MP-10,或亞磷酸苯酯 (triphenyl phosphite, TPPi) 和三(2,4-第二丁基)磷酸苯酯Irgafos 168 與 PC/PET/OP1230 混練,希望螯合OP1230中鋁離子。但添加上述化合物之PC/PET/OP12330無鹵耐燃合膠,其DSC第一段升溫合膠僅具90.4℃之單一Tg 且PET熔融峰幾乎消失,表示上述方法無法完全螯合OP1230中的鋁離子,導致PC/PET合膠過度酯交換,呈發泡產物。 使用EXY加入PC之合膠其Tg亦下降,添加10 wt% EXY之PC合膠Tg由149.5℃下降至143.3℃。但與PET之合膠並不影響PET之Tg、Tm。PC/PET/EXY無鹵耐燃合膠有些微發泡,表示使用EXY較使用OP1230具較低酯交換程度,故DSC第一段升溫中仍可見74.4℃與136.9℃之兩Tg與PET熔融峰。 以雙螺桿押出機量產PC/PET/MBS-g-GMA/EXY無鹵耐燃合膠,由於PC/PET合膠有模口膨脹現象無法拉條,添加耐衝擊改質劑丙烯酸甲酯-丁烯-苯乙烯共聚物 (methyl methacrylate butadiene styrene terpolymer, MBS) 及其接枝甲基丙烯酸缩水甘油酯共聚物 (MBS-g-GMA) 可改善模口膨脹現象。PC/PET/MBS或(MBS-g-GMA)合膠之DSC第二段升溫結果顯示相對於MBS,使用MBS-g-GMA仍具兩Tg與PET相熔融峰,代表使用MBS-g-GMA酯交換程度較低。這兩種耐衝擊改質劑在添加量達10 wt%時,耐衝擊強度皆約70 kg-cm/cm。由於MBS-g-GMA的熱穩定性與機械性質較佳,配合耐燃劑EXY可製備PC/PET無鹵耐燃增韌合膠。DSC第一、第二段升溫顯示PC/PET/MBS-g-GMA/EXY無鹵耐燃合膠玻璃轉移溫度、熔點與PC/PET/MBS-g-GMA合膠相近。添加10 phr. EXY之合膠可達UL 94 V-0 (1/8’’) 級阻燃,但耐衝擊強度與伸長率亦急遽下降,顯示磷酸鹽系統在PC/PET合膠之機械性質提升並非很有效。
In this study, polycarbonate/poly(ethylene terephthlate)/halogen-free flame retardant/impact modified composites were prepared via melt blending. Two flame retardants were utilized in this system. They can be classified into two types: aluminum phosphinate (OP1230) and aluminum phosphonate (EXY). The purpose of this study is to develop PC/PET blends to produce halogen-free flame retardant material. These blends can be applied to manufacture high value-added products like electronic appliances, automobiles and construction materials. PC and PET encounters the transesterification reaction in melt-processing. A band of 1070 cm-1 (aromatic ester vibration) is observed for PC/PET blends in IR spectrograph, and this indicates that transesterification reaction occurring. DSC results comfirms the transesterification reaction that increases the Tg in PET-phase and decreases the Tg in PC-phase, and is consistent with DMA results. OP1230 is added to PC, it results Tg of PC decreased from PC thermal degradation caused by aluminum ion from itself. On the other hand, OP1230 did not effect Tg, Tm of PET, but we can observed cooling peak of OP1230 from DSC first cooling, indicates that OP1230 separate out PET matrix as cooling process, and the OP1230 makes PET ingredient became brittle. Impact modifier, ethylene glycidyl methacrylate butylacrylate terpolymer (PTW), is used to PET/PTW/OP1230 ternary blends aid OP1230 dispersion in PET matrix to achieve flame retardant and toughening performance, but OP1230 result PTW degradation that PET/PTW/OP1230 composties became brittle. PC/PET/OP1230 blends is a foaming product; in IR spectrograph, a shoulder of aromatic ester vibration of 1070 cm-1 is observed, which illustated transesterification reaction occurring when melt blending. As the sample is heated by annealed 300℃, N2 for 5 min, the IR results showe 1773 cm-1 C=O stretching of PC was gone. This indicates that aluminum ion from OP1230 makes PC thermal degradation, and this causes PC/PET over transesterification. Therefore, DSC first heating PC/PET/OP1230 just had a single Tg 106.4℃ and no melting peak of PET. In order to inhibit the degradation reaction caused by aluminum ion from OP1230 on PC, polymer with acid group, such as Engage-g-MA and ionomer Surlyn are utilized; otherwise, compound with unpaired electron, amine modified styrene ethylene butylene styrene copolymer MP-10 are also used; or using triphenyl phosphite (TPPi) and (Tris(2,4-di-tert.-butylphenyl)phosphit), Irgafos 168 to blend with PC/PET/OP1230, hoping chelated aluminum ion of OP1230. However, while above compounds are blended with PC/PET/OP1230, the DSC first heating result shows a single Tg 90.4℃ and the melting peak of PET is almost invisible, indicates that these formulations can’t chelate aluminum ion of OP1230 completely. This result in PC/PET blends over transesterification, and forms a foamed product. While the EXY is added to PC, the Tg of PC decreases; while 10 wt% EXY is added that Tg is reduced from 149.5℃ to 143.3℃. But the blending of EXY with PET didn''t effect Tg and Tm of PET. PC/PET/EXY blends is slightly foaming, indicates that blending with EXY have lower transesterification level than blending with OP1230, so first heating of DSC is still observed two Tgs and a melting peak of PET. PC/PET/MBS-g-GMA/EXY composites were scaled up by twin-screw extruder. PC/PET blends can’t molding because die swelling phenomenon, adding impact modifier methyl methacrylate- butadiene-styrene (MBS) and MBS graft glycidyl methacrylate product (MBS-g-GMA) improves on die swelling. PC/PET/MBS or (MBS-g-GMA) blends, DSC second heating shows that MBS-g-GMA blends are still observed two Tgs and melting peak of PET compared to MBS blends, indicating that using MBS-g-GMA has lower transesterification level. When both impact modifying contents reach 10 wt%, the impact strength is about 70 kg-cm/cm. Since MBS-g-GMA had better thermal stability and mechanical properties than MBS, it can be used to prepared PC/PET/halogen-free flame retardant composites while EXY is added. DSC first heating and second heating results show that the Tg and Tm of PC/PET/MBS-g-GMA/EXY are similar to the PC/PET/MBS-g-GMA blends. Adding 10 phr. EXY, the flammability test of composites reaches UL 94 V-0 (1/8’’), but the impact strength and strain rate reduced dramatically, which indicates that phosphorous salt system is not effective in raising the mechanical properties of PC/PET blending.
URI: http://hdl.handle.net/11455/3249
其他識別: U0005-2108201221101400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108201221101400
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.