Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3253
標題: 自我摻雜聚苯胺修飾電極結合奈米金粒子信號放大效益應用於電化學免疫感測器
gold nanoparticles modified self-doping polyaniline electrode for signal enhancement of electrochemical immunosensors
作者: 黃聖祐
Huang, Sheng-Yu
關鍵字: 競爭型免疫感測器
competitive immunosensor
自摻雜聚苯胺
人類血清白蛋白
膠體金
self-doping polyaniline
human serum albumin
colloidal gold
出版社: 化學工程學系所
引用: 1. Yalow, R.S., and Berson, S. A., Immunoassay of endogenous plasma insulin in man. The Journal of Clinical Investigation, 1960. 39(7): p. 1157-1175. 2. Suwansa-ard, S., and Kanatharana, P., et al., Comparison of surface plasmon resonance and capacitive immunosensors for cancer antigen 125 detection in human serum samples. Biosens Bioelectron, 2009. 24(12): p. 3436-3441. 3. Loyprasert, S., and Thavarungkul, P., et al., Label-free capacitive immunosensor for microcystin-LR using self-assembled thiourea monolayer incorporated with Ag nanoparticles on gold electrode. Biosens Bioelectron, 2008. 24(1): p. 78-86. 4. Zamfir, L.G., and Geana, I., et al., Highly sensitive label-free immunosensor for ochratoxin A based on functionalized magnetic nanoparticles and EIS/SPR detection. Sensor Actuat B-Chem, 2011. 159(1): p. 178-184. 5. Tahir, Z.M., and Alocilja, E. C. and D.L. Grooms, Polyaniline synthesis and its biosensor application. Biosens Bioelectron, 2005. 20(8): p. 1690-1695. 6. Shirakawa, H., and Louis, Edwin J., et al., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). Journal of the Chemical Society, Chemical Communications, 1977(16): p. 578-580. 7. Patil, A.O., and Ikenoue, Y., et al., Self-doped conducting polymers. Synthetic Met, 1987. 20(2): p. 151-159. 8. Chaubey, A. and B.D. Malhotra, Mediated biosensors. Biosens Bioelectron, 2002. 17(6-7): p. 441-456. 9. Morgan, C.L., D.J. Newman, and C.P. Price, Immunosensors: Technology and opportunities in laboratory medicine. Clin Chem, 1996. 42(2): p. 193-209. 10. 陳燕惠, 奈米碳管與膠體金於電化學生物感測器上之應用. 國立中興大學 化學工程學系 碩士論文, 2006. 11. Scheller, F., et al., Research and development of biosensors. A review. Analyst, 1989. 114(6): p. 653-662. 12. Clark, L.C. and C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 1962. 102(1): p. 29-45. 13. Komaba, S., et al., Potentiometric biosensor for urea based on electropolymerized electroinactive polypyrrole. Electrochim Acta, 1997. 42(3): p. 383-388. 14. Kumar, A., et al., Co-immobilization of cholesterol oxidase and horseradish peroxidase in a sol–gel film. Anal Chim Acta, 2000. 414(1–2): p. 43-50. 15. Manowitz, P., P.W. Stoecker, and A.M. Yacynych, Galactose Biosensors Using Composite Polymers to Prevent Interferences. Biosens Bioelectron, 1995. 10(3-4): p. 359-370. 16. Xue, H.G., Z.Q. Shen, and Y.F. Li, Polyaniline-polyisoprene composite film based glucose biosensor with high permselectivity. Synthetic Met, 2001. 124(2-3): p. 345-349. 17. Jdanova, A.S., et al., Conductometric urea sensor. Use of additional membranes for the improvement of its analytical characteristics. Anal Chim Acta, 1996. 321(1): p. 35-40. 18. Wang, J., Analytical electrochemistry-third edition, 2006: Wily-VCH. 19. Bard, A.J. and L.R. Faulkner, Electrochemical methoda:fundamentals and applications, 2000: Wily. 20. 胡啟章, 電化學原理與方法, 2002: 五南圖書出版股份有限公司. 21. MacCrehan, W.A. and R.A. Durst, Dual-electrode, liquid chromatographic detector for the determination of analytes with high redox potentials. Anal Chem, 1981. 53(11): p. 1700-1704. 22. 白志虹, 毛細管電泳電化學偵測法使用金汞膜微電極分析三有機錫化合物之研究. 國立中山大學 化學研究所 碩士論文, 2001. 23. 吳芊彣, 奈米導電高分子於免疫層析檢測上的應用. 國立中興大學 化學工程研究所 碩士論文, 2004. 24. Kanatzidis, M.G., et al., Conductive polymer/oxide bronze nanocomposites. Intercalated polythiophene in vanadium pentoxide (V2O5) xerogels. Chemistry of Materials, 1990. 2(3): p. 222-224. 25. Skothrim, T.A., Handbook of conducting polymers-second edition, 1998: New York:Marcel Dekker. 26. Ambrosi, A., et al., The application of conducting polymer nanoparticle electrodes to the sensing of ascorbic acid. Anal Chim Acta, 2008. 609(1): p. 37-43. 27. Yang, M.M., et al., Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor. Electrochim Acta, 2010. 55(23): p. 7021-7027. 28. Ball, I.J., et al., Pervaporation studies with polyaniline membranes and blends. J Membrane Sci, 2000. 174(2): p. 161-176. 29. Dhand, C., et al., Recent advances in polyaniline based biosensors. Biosens Bioelectron, 2011. 26(6): p. 2811-2821. 30. Wadhwa, R., C.F. Lagenaur, and X.T. Cui, Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J Control Release, 2006. 110(3): p. 531-541. 31. Ramanavicius, A., A. Ramanaviciene, and A. Malinauskas, Electrochemical sensors based on conducting polymer- polypyrrole. Electrochim Acta, 2006. 51(27): p. 6025-6037. 32. Leung, L.M., et al., Electrical and optical properties of polyacetylene copolymers. React Funct Polym, 2002. 50(2): p. 173-179. 33. Uygun, A., DNA hybridization electrochemical biosensor using a functionalized polythiophene. Talanta, 2009. 79(2): p. 194-198. 34. Saxena, V. and B.D. Malhotra, Prospects of conducting polymers in molecular electronics. Curr Appl Phys, 2003. 3(2-3): p. 293-305. 35. Letheby, H., XXIX.-On the production of a blue substance by the electrolysis of sulphate of aniline. Journal of the Chemical Society, 1862. 15: p. 161-163. 36. Chiang, J.-C. and A.G. MacDiarmid, ‘Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime. Synthetic Met, 1986. 13(1–3): p. 193-205. 37. MacDiarmid, A.G., "Synthetic metals": A novel role for organic polymers (Nobel lecture). Angew Chem Int Edit, 2001. 40(14): p. 2581-2590. 38. 楊岳峰, 在孔道均一的模板內合成聚苯胺奈米管. 國立中央大學 化學工程與材料工程研究所 碩士論 文, 2003. 39. Asturias, G.E., et al., The oxidation state of “emeraldine” base. Synthetic Met, 1989. 29(1): p. 157-162. 40. Genies, E.M., A.A. Syed, and C. Tsintavis, Electrochemical Study Of Polyaniline In Aqueous And Organic Medium. Redox And Kinetic Properties. Mol Cryst Liq Cryst, 1985. 121(1-4): p. 181-186. 41. Racicot, R., R. Brown, and S.C. Yang, Corrosion protection of aluminum alloys by double-strand polyaniline. Synthetic Met, 1997. 85(1-3): p. 1263-1264. 42. Kuo, C.T. and W.H. Chiou, Field-effect transistor with polyaniline thin film as semiconductor. Synthetic Met, 1997. 88(1): p. 23-30. 43. Wang, H.L., et al., Application of polyaniline (emeraldine base, EB) in polymer light-emitting devices. Synthetic Met, 1996. 78(1): p. 33-37. 44. Bernard, M.C., et al., Study by optical multichannel analysis of the electrochromic phenomena in polyaniline doped with camphorsulfonic acid. Synthetic Met, 1996. 81(2-3): p. 215-219. 45. Bernard, M.C., A. HugotLeGoff, and W. Zeng, Characterization and stability tests of an all solid state electrochromic cell using polyaniline. Synthetic Met, 1997. 85(1-3): p. 1347-1348. 46. Huang, J., et al., Electrochemical immunosensor based on polyaniline/poly (acrylic acid) and Au-hybrid graphene nanocomposite for sensitivity enhanced detection of salbutamol. Food Res Int, 2011. 44(1): p. 92-97. 47. Kim, J.-H., et al., Conductimetric membrane strip immunosensor with polyaniline-bound gold colloids as signal generator. Biosensors and Bioelectronics, 2000. 14(12): p. 907-915. 48. Tahir, Z.M., E.C. Alocilja, and D.L. Grooms, Polyaniline synthesis and its biosensor application. Biosensors and Bioelectronics, 2005. 20(8): p. 1690-1695. 49. Betty, C.A., Highly sensitive capacitive immunosensor based on porous silicon–polyaniline structure: Bias dependence on specificity. Biosensors and Bioelectronics, 2009. 25(2): p. 338-343. 50. Khan, R. and M. Dhayal, Chitosan/polyaniline hybrid conducting biopolymer base impedimetric immunosensor to detect Ochratoxin-A. Biosensors and Bioelectronics, 2009. 24(6): p. 1700-1705. 51. Sergeyeva, T.A., et al., Polyaniline label-based conductometric sensor for IgG detection. Sensor Actuat B-Chem, 1996. 34(1-3): p. 283-288. 52. Caygill, R.L., et al., Novel impedimetric immunosensor for the detection and quantitation of Adenovirus using reduced antibody fragments immobilized onto a conducting copolymer surface. Biosensors and Bioelectronics, 2012. 32(1): p. 104-110. 53. Khan, R., et al., Mycotoxin detection on antibody-immobilized conducting polymer-supported electrochemically polymerized acacia gum. Anal Biochem, 2011. 410(2): p. 185-190. 54. Matharu, Z., et al., Langmuir–Blodgett films of polyaniline for low density lipoprotein detection. Thin Solid Films, 2010. 519(3): p. 1110-1114. 55. 張建偉, 比較thiol及dithiol monolayer修飾網版印刷電極於電容型免疫感測器上檢測人血清白蛋白. 國立中興大學 化學工程學系 碩士論文, 2010. 56. Chlandler J. , G.T., and R. N.,, The place of gold in rapid test. IVD Technology, 2000: p. 6 37-49. 57. Chen, H., et al., An electrochemical impedance immunosensor with signal amplification based on Au-colloid labeled antibody complex. Sensor Actuat B-Chem, 2006. 117(1): p. 211-218. 58. Link, S., Z.L. Wang, and M.A. El-Sayed, Alloy Formation of Gold−Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition. The Journal of Physical Chemistry B, 1999. 103(18): p. 3529-3533. 59. Kim, S.Y. and M.J. Choi, Preparation and characterization of digoxin antibody and its application to immunoassays: comparison of performance characteristics between enzyme immunoassay and immunostrip test. Microchem J, 2000. 65(3): p. 209-219. 60. 何敏夫, 臨床化學, 1998: 合計圖書出版社. 61. Fan, A.P., C.W. Lau, and J.Z. Lu, Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label. Anal Chem, 2005. 77(10): p. 3238-3242. 62. Wu, Z.S., et al., A sensitive immunoassay based on electropolymerized films by capacitance measurements for direct detection of immunospecies. Anal Biochem, 2005. 337(2): p. 308-315. 63. Hu, S.Q., et al., The integration of gold nanoparticles with semi-conductive oligomer layer for development of capacitive immunosensor. Sensor Actuat B-Chem, 2005. 106(2): p. 641-647. 64. Lu, B., et al., Development of an ''electrically wired'' amperometric immunosensor for the determination of biotin based on a non-diffusional redox osmium polymer film containing an antibody to the enzyme label horseradish peroxidase. Anal Chim Acta, 1997. 345(1-3): p. 59-66. 65. Santandreu, M., et al., Amperometric immunosensors based on rigid conducting immunocomposites. Anal Chem, 1997. 69(11): p. 2080-2085. 66. Valat, C., et al., A disposable Protein A-based immunosensor for flow-injection assay with electrochemical detection. Anal Chim Acta, 2000. 404(2): p. 187-194. 67. Bohren . C. F. and H.D. R., Absorption and Scattering of Light by Small Particles, 1983: New York: Wiley. 68. He, Y.Q., et al., A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. Spectrochim Acta A, 2005. 61(13-14): p. 2861-2866. 69. Lee, R.-H., et al., Self-doping effects on the morphology, electrochemical and conductivity properties of self-assembled polyanilines. Thin Solid Films, 2008. 517(2): p. 500-505. 70. Tan, Y., et al., A signal-amplified electrochemical immunosensor for aflatoxin B1 determination in rice. Anal Biochem, 2009. 387(1): p. 82-86. 71. Saber, R., S. Mutlu, and E. Piskin, Glow-discharge treated piezoelectric quartz crystals as immunosensors for HSA detection. Biosens Bioelectron, 2002. 17(9): p. 727-734. 72. Samanman, S., et al., Characterization and application of self-assembled layer by layer gold nanoparticles for highly sensitive label-free capacitive immunosensing. Electrochim Acta, (0). 73. Omidfar, K., et al., A high-sensitivity electrochemical immunosensor based on mobile crystalline material-41–polyvinyl alcohol nanocomposite and colloidal gold nanoparticles. Anal Biochem, 2012. 421(2): p. 649-656. 74. Omidfar, K., et al., Development of urinary albumin immunosensor based on colloidal AuNP and PVA. Biosensors and Bioelectronics, 2011. 26(10): p. 4177-4183. 75. Tu, M.-C., et al., A quantum dot-based optical immunosensor for human serum albumin detection. Biosensors and Bioelectronics, 2012. 34(1): p. 286-290. 76. Caballero, D., et al., Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface. Anal Chim Acta, 2012. 720(0): p. 43-48. 77. Ahmadi, A., et al., Electrochemical immunosensors: A promising alternative method for protein analysis in urine. Clinical Biochemistry, 2011. 44(13, Supplement): p. S16.
摘要: 本研究利用自我摻雜聚苯胺 (self-doping Polyaniline) 於導電ITO玻璃 (indium tin oxide) ,製備一競爭式免疫感測器;當抗原與對應抗體結合時所產生之複合物,會造成阻抗值的變化,因應此效應即可使用差式脈衝伏安法 (differential pulse voltammograms) 量測對應於抗原濃度之電流變化,將之應用於人類血清白蛋白 (human serum albumin,HSA) 檢測上。 相較一般導電高分子組裝之免疫感測器,此研究利用摻雜2-胺基苯磺酸(o-aminobenzenesulfonic acid),使聚苯胺自摻雜形成圓球形態,達到高表面積目的,同時又不失去聚苯胺原本之高傳導性、高生物適性、高穩定性等優良性質,進而擴增感測濃度範圍及增強信號。 研究中使用競爭型的方式間接檢測抗原抗體的結合,其後在利用二次抗體 (goat anti-mouse) 結合膠體金作為放大信號的標的物,其中固定化抗原的濃度、競爭抗體的最高濃度及膠體金結合二抗的最佳濃度分別為250 μg/mL、20 μg/mL、5 μg/mL,最適化後檢測極限為1 μg/mL線性範圍可到10~200 μg/mL,添加膠體金粒子放大信號後可將檢測範圍降至0.5~200 ug/mL ,檢測極限為413 ng/mL 。 此競爭型免疫感測器在組裝上具有製備容易、低成本,在檢測上則有寬廣的線性範圍與良好的信號響應等等優點,並可適用單次檢測、用完即拋式的檢測器上,使用於臨床檢驗分析人類血清白蛋白HSA 。
A competitive immunosensor, based on the indium tin oxide(ITO) electrode modified by self-doping polyaniline(SPAN), was fabricated for the detection of human serum albumin(HSA) by measuring the differential pulse voltammograms(DPV). Compared to other immunosensors applying electrodes modified by conducting polymer, this study o-aminobenzenesulfonic acid(SAN) dopped Aniline(AN) to make the morphology of AN in the form of microsphere, resulting in the boost of signal, the extension of detection range, and the sustainability of high conductivity, high biocompatibility and high stability of AN due to high surface area of microsphere. In this study, a competitive binding of antigen in samples or on test line to antibody was adopted as the principle to indirectly determine the concentration of antigen in samples. In addition, secondary antibodies(goat anti-mouse) coupled with colloidal gold were used as the marker to amplify the signal of immunosensors. The concentration of the immobilized HSA, the highest concentration of anti-HSA and the concentration of secondary antibody conjugated with colloidal gold were found as follows: 250 μg/mL, 20 μg/mL, 5 μg/mL. The linear range was from 10 to 200 μg / mL with a optimal detection limit of 1μg/mL. After adding colloidal gold particles to amplify the signal, the linear range was from 0.5 to 200 μg/ml with a detection limit of 413 ng/ml. The proposed competitive immunosensor is easy to prepare, with the advantages of low-cost, wide linear detection range and good signal response. This assay provides a clinical testing method for measuring human serum albumin concentrations via single-use competitive immunosensor of ITO electrode modified by SPAN.
URI: http://hdl.handle.net/11455/3253
其他識別: U0005-3007201214492900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3007201214492900
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.