Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3270
標題: 高爐鐵水主流道流力與出鐵操作條件數值模擬
Numerical Simulation of Fluid Dynamics in the Blast Furnace Trough and Operation Condition during the Tapping Process
作者: 林詠盛
Lin, Yung-Sheng
關鍵字: 體積分率法
VOF
高盧鐵水主流道
固化模型
blast furnace trough
solidification
出版社: 化學工程學系所
引用: 1. 陳長植. 工程流體力學. 武漢 : 華中科技大學出版社, 2008. ISBN9787560943725. 2. Juan S. Sylvestre, Begnis Elena Brandaleze. Simulaci An del canal del alto horno n¢X 2 por medio de modelos f Asicos. Estudos tecnol Agicos. jan/jun 2006, Vol. 2, 1, pp. 1-12. 3. Ricardo V. P. Rezende, Antonio Fabio C. da Silva, Clovis R. Maliska. Simulacao da Colisao de Jato Aberto Em Uma Superficie Livre. April 2008. 4. Q. He, G. Evans, P. Zulli, F. Tanzil and B. Lee. Flow Characteristic in a Blast Furnace Trough. ISIJ International. 2002, Vol. 42, 8. 5. H. Kim, B. Ozturk and R. J. Fruehan. Slag-metal Separation in the Blast Furnace Trough. ISIJ International. 1998, Vol. 38, 5, pp. 430-439. 6. C. L. Chiu. Velocity Distribution in Open-Channel Flow. J. Hydr. Engrg. ,ASCE. 1989, Vol. 115, 5, pp. 576-594. 7. Z. F. Yuan, W. L. Huang, and K. Mulai. Local corrosion of magnesia-chrome refractories driven by marangoni convection at the slag-metal interface. Journal of Colloid and Interface Science. 2002, Vol. 253, pp. 211-216. 8. C. Ma, D. Bothe. Direct numerical simulation of thermocapillary flow based on the Volume. International Journal of Multiphase Flow. 2011, Vol. 37, pp. 1045-1058. 9. K. Fagerlund, S. Sun and S. Jahanshahi. Effect of Marangoni-induced flow on the rate of refractory dissolution in molten slags. Scandinavian Journary of Metallurgy. 2002, Vol. 31, pp. 359-366. 10. K. Mukai. Marangoni flows and corrosion of refractory walls. Physical and Engineering Sciences. 1998, Vol. 356, pp. 1015-1026. 11. A. Matsui, S. Nabeshima, H. Matsuno, N. Kikuchi and Y. Kishimoto. Kinetics Behavior of Iron Oxide Formation under the Condition of Oxygen Top Blowing for Dephosphorization of Hot Metal in the Basic Oxygen Furnace. ISIJ International. 2009, Vol. 95, 3. 12. H. Terasaki, S. Urakawa, K. Funakoshi, N. Nishiyama, Y. Wang, K. Nishida,. In situ measurement of interfacial tension of Fe–S and Fe–P liquids under high. Physics of the Earth and Planetary Interiors. 2009, Vol. 174, pp. 220-226. 13. Q. He, P. Zulli, F. Tanzil, B. Lee, J. Dunning and G. Evans. Flow Characteristics of a Blast Furnace Taphole Stream and Its Effects on Trough Refractory Wear. ISIJ International. 2002, Vol. 42, 3, pp. 235-242. 14. L. M. Juhani, P. T. Tuomas, K. Johanaa, F.T. Matti, N. Hannu, and H. J. Juhani. Modelling of fluid flows in the blast furnace trough. Steel Research. 2001, Vol. 72, pp. 130-135. 15. V. Stanek and J. Szekely. The effect of surface tension flows on the dissolution of a partially immersed solid in a liquid-analysis. Chemical Engineering Science. 1970, Vol. 25, pp. 699-715. 16. Gambit, Guide Modeling. 2003. 17. ANASYS 13.0 User''s Guide, Lebanon,. 2010. 18. H. K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Wiley, New York : s.n., 1995. 19. H. Tennekes and J. L. Lumley. A First Course in Turbulence: Cambridge, Mass. :MIT Press. 1972. 20. T. H. Shih and J. L. Lumley. Kolmogorov Behavior of Near-Wall Turbulence and its Application in Turbulence Modeling. Interational Journal of Computational Fluid Dynamics. 1993, Vol. 1, pp. 43-56. 21. J. O. Hinze. Turbulence., McGraw-Hill Publishing Co. New York : s.n., 1975. 22. D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, Inc. La Canada, California : s.n., 1998. 23. B. E. Launder and D. B. Spalding. The Numerical Computation of Turbulence Flows. Computer Methods in Applied Mechanics and Engineering. 1974, Vol. 3, pp. 269-289. 24. G. Vidalain, L. Gosselin , M. Lacroix. An enhanced thermal conduction model for the prediction of convection. International Journal of Heat and Mass Transfer. 2009, Vol. 52, pp. 1753-1760. 25. J. U. Brackbill, D. B. Kothe, and C. Zemach. A continuum method for modeling surface tension. Journal of Computation Physics. 1992, Vol. 100, pp. 335-354. 26. 王福軍. 計算流體力學分析-CFD軟體原理與應用. 北京 : 清華大學出版社, 2004. 27. 李人獻. 有限體積法基礎. 北京 : 國防工業出版社, 2008. 28. S. V. PatanK and D. B. Spalding. A calaclation procedure for heat. International Journal of Heat and Mass Transfer. 1972, Vol. 15, pp. 1787-1806. 29. J. P. Vandoormaal and G. D. Raithby. Enhancements of the SMPLE Method for Predicting Incompressible Fluid Flows. Numer. Heat Transfer. 1984, Vol. 7, pp. 147-163. 30. R. I. Issa. Solution of the Implicitly Discretized Fluid Flow Equations by Operator Splitting. J. Comput. Phys. 1986, Vol. 40, pp. 40-65. 31. S. Armsifield and R. Street. The Fractional-Step Method for the Navier-Stokes Equations on Staggered Grids: Accuracy of Three Variations. Journal of Comutational Physics. 1999, Vol. 153, pp. 660-665. 32. H. M. Glaz, J. B. Bell, P. Colella,. Second-Order Projection Method for the Incompressible Navier-Stokes Equations. Journal of Computational Physics. 1989. 33. K. Mills. The Estimation of Slag Properties. March 7, 2011. 34. V. Panjkovic, J. S. Truelove, P. Zulli,. numerical modeling of iron flow and heat transfer in blast furnace hearth. Ironmaking & Steelmaking. 2002, Vol. 29, pp. 390-400.
摘要: 為了降低耐火材成本與延長高爐鐵水主流道(blast furnace trough)壽命是目前先代鋼鐵廠所追求目標之一。鐵水主流道侵蝕防治為關鍵,而主流道內鐵水流動行為對於侵蝕程度扮演重要因素。 本文先依據中鋼提供流道機構與操作數據,以計算流體力學(computational fluid dynamics)為架構求解並探討層流、k-ω模式之差異性,以固化模式描述鐵水於主流道之流動行為並且驗證現場數據。 出鐵過程的操作條件包含爐渣體積分率、出鐵仰角、流道機構。當爐渣體積分率從0.2增加至0.3或0.4時,壁面剪應力變化分別增加36.47%與55.42%。在整個出鐵過程,要有效分離鐵水與爐渣且減少鐵水流失,結果顯示鐵水與爐渣之間界面的速度與爐渣黏度扮演重要角色。不同的出鐵仰角從8度至12度會產生衝擊角度與距離均向前位移13%並且在衝擊區的壁面需多承受23.9%磨損。增加鐵水主流道的衝擊區寬度有利於減緩壁面剪應力約15%,同時也降低耐火材使用率。
In order to reduce the coat of refractory and prolong the campaign life of the blast furnace trough has been pursued all the time for iron making. It is well know that is critical to prevent the erosion of the main iron runner. The behavior of hot metal flow in the trough has been considered that the key factor for determining the erosion of refractory in the trough. Based on BF 4 of China Steel Co., Taiwan, providing the geometrical design of main iron trough and operation condition was solved by computational fluid dynamics, discussing about the difference of the laminar flow、k-omega model and solidification model for the action of hot metal flow in the trough and verify that the data of the repair record from the trough. The operation condition during the tapping process includes slag volume fraction, taphole angle, geometrical design of main trough. When the slag volume fraction rises from 0.2 to 0.3 or 0.4, shear stress at the side of the wall increases of 36.47% and 55.42% respectively. Metal-slag separation efficient base on the density difference,the results that the flow velocity at the interface between hot metal and slag, and slag viscosity are the predominant factor. The change of taphole angle from the 8 degree to 12 degree can lead to the displacement of the impingement point of the taphole stream and bubble resurfacing point about 13%, and the side of the wall must bear the erosion of 23.9% at the impingement region in the trough. Increasing the impingement region in the trough is help to lower the shear stress at the wall about 15%, reducing the usage rate of refractory simultaneously.
URI: http://hdl.handle.net/11455/3270
其他識別: U0005-0707201214285100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0707201214285100
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.