Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3272
標題: 黑色光阻之微影製程最適化研究
The Study on Lithography Process Optimization of Photo-sensitive Resin with Carbon Black
作者: 甘展昀
Kan, Chan-Yun
關鍵字: 黑色矩陣
Black matrix
碳黑
微影製程
田口方法
動態特性
Carbon black
Lithography process
Taguchi method
Dynamic characteristic
出版社: 化學工程學系所
引用: 參考文獻 1.Ram W.Sabnis,“Color filter technology for liquid crystal displays”,Displays,Vol.20,119-129,1999. 2.陳鈺坤,“面板的轉運 Color–彩色濾光片”,產經資訊,No.19,36-42,2004. 3.Kuo-Huai Kuo,Wen-Yen Chiu,Kuo-Huang Hsieh,Trong-Ming Don,“Novel UV-curable and alkali-soluble resins for light-shielding black matrix application”,European Polymer Journal,Vol.45,474-484,2009. 4.田民波,“TFT LCD面板設計與構裝技術”,五南圖書出版股份有限公司,2008. 5.林松香,張德宜,趙希德,李榮哲,“高遮光係數黑色矩陣”,工業材料雜誌,No.183,161-164,2002. 6.李榮哲,“LCD彩色濾光片材料”,化工技術,NO.10, 166-180,2002. 7.Hayashi,Kazuyuki;Iwasaki,Keisuke;Morii,Hiroko;Horie,Shinji.“Black coloration materials with good dispersability and fillability for black matrix for color filters”,Japan Patent NO.2005148223,2005. 8.陳柏菁,“高精細彩色濾光片之曝光技術”,液晶平面顯示器FPD.DEC,2001. 9.Wen Tung Cheng,Wei Ting Yeh,“Preparation and characterization of free radical photopolymer with carbon black nano-particles”,Journal of Photopolymer Science and Technology,Vol.19,685-698,2006. 10.陳大極,“超薄樹脂型黑色矩陣材料製備與特性研究”,國立中興大學碩士論文,2008. 11.陳偉源,“彩色濾光片之高光學密度黑色矩陣研究”,國立台灣大學碩士論文,2002. 12.彭郁翔,“碳黑分散劑之合成與黑色矩陣之微影圖案製作”,國立台灣大學碩士論文,2007. 13.Horng-Show Koo,Mi Chen, Tomoji Kawai,“Improvements in the optical and physical characteristics of black matrix films containing carbon nanotubes on color filter”,Diamond & Related Materials,Vol.18,533-536,2009. 14.M. Sharif Sh,F. Golestani Fard,E. Khatibi,H. Sarpoolaky,“Dispersion and stability of carbon black nanoparticles, studied by ultraviolet–visible spectroscopy”,Journal of the Taiwan Institute of Chemical Engineers,Vol.40,524-527, 2009. 15.I. Mejia,M. Estrada,M. Avila,“Improved upper contacts PMMA on P3HT PTFTS using photolithographic processes”, Vol.48,1795-1799,2008. 16.M. Tani,S. Ito,M. Sakagawa,T. Sugimura,“A photoresist for black matrix on TFT arrays”,SID 97 DIGEST,969,1997. 17.S. Hiroshi,S. Takeshi,“The photosensitive black composition, the black matrix baseplate and the color filter which use that [Machine Translation]”,Japan Patent NO. 2005189561,2005. 18.顧鴻濤,“光電液晶平面顯示器技術基礎及應用”,新文京開發出版股份有限公司,2004. 19.Young Do Kim,Jae Pil Kim,Oh Sang Kwon,In Hee Cho,“The synthesis and application of thermally stable dyes for ink-jet printed LCD color filters”,Dyes and Pigments,Vol.81, 45-52,2009. 20.S. Martinez-Crespiera,E. Ionescu,M. Schlosser,K. Flittner,G. Mistura,R. Riedel,H. F. Schlaak,“Fabrication of silicon oxycarbide-based microcomponents via photolithographic and soft lithography approaches”, Vol.169,242-249,2011. 21.Putten Andreas M Van Der,Schrama Johannes Thomas,“Method of manufacturing a black matrix of nickel on a passive plate of a liquid crystal display device in an electroless process”,Europent Patent NO.0583822,1994. 22.H. Kamata,M. Kamijo,M. Onishi,“Color filter black matrix rsist composition and carbon black dispersion composition used for the composition”,United States Patent:0041053,2006. 23.Matsumoto Yasuo,Azuma Keigo,“Method of sputtering chromium for black matrix”,Japan Patent NO.2001316813,2001. 24.R. W. Sabnis,J. W. Mayo,M. D. Stroder,K. Aoba, K. Ema, Y. Sone,T. Nihira,A. Yanagimoto,“A novel photosenitive ultrathin black matrix system”,Asia Display,1025-1028,1998. 25.陳韋名,“歐盟電機電子設備限用有害物質指令(RoHS)正式實施,興起綠色商機”,華經濟研究院(台灣WTO中心),2006. 26.林敬智,“開發環保型液晶顯示器產品之挑戰”,環安簡訊電子報,2005. 27.Choi,Sang Un and Kim,Youn Joo,“Liquid crystal display with black matrix of low reflectivity”,U.S. Patent NO.727555,2000. 28.T. Hasumi,T. Koseki,M. Kodate,K. Shimizu,“Carbon dispered organic black matrix on thin film transistor liquid crystal display”,Euro.Display,237-239,1996. 29.Nagase Akira,Yoshioka Masahiro,Goto Tetsuya,“Resin black matrix, color filter, liquid crystal display device and black coating film composition”,Japan Patent NO.2004004651,2004. 30.Ito Kazunori,Kitaoka Naoyuki,“Resister composition for black matrix”,Japan Patent NO.2003344996,2003. 31.C. M. Hesler,E. S. Simon,“Late-news poster:pigment-dispersed organic black-matrix photoresists for LCD color filters”,SID 95 DIGEST,446,1995. 32.Y. Shima,T. Taguchi,A. Tamura,"Black photosensitive resin composition, color filter made by using the same, and a process for production thereof",U.S. Patent No.5925484, 1999. 33.陳志強,“OLED有機發光二極體顯示器技術”,全華圖書股份有限公司,2007. 34.龍文安,“積體電路微影製程”,高立出版社,1998. 35.羅正忠, 張鼎張譯,“半導體製程技術導論”,台灣培生教育出版股份有限公司,2002. 36.莊達人,“VLSI 製造技術”,高立出版社,1995. 37.Yung-Kuang Yang,Tsun-Ching Chang,“Experimental analysis and optimization of a photo resist coating process for photolithography in wafer fabrication”,Microelectronics Journal,Vol.37,746-751,2006. 38.B. Bednar,J. Kralicek,J. Zachoval,“Resists in microlithography and printing”,Elsevier,Amsterdam,38-43, 1993. 39.W. M. Moreau,Semiconductor Lithography,Plenum,New York, 1991. 40.Hideki Tomozawa,Yoshihiro Saida,Yoshiaki Ikenoue,Fumio Murai,Yasunori Suzuki,Tsutomu Tawa,Yoshihiro Ohta,J. Photopolym. Sci. Technol.,Vol.9,No.4,713-715,1996. 41.Takahiro Matsuo,Masayuki Endo,Shigeyasu Mori,Koichi Kuhara,Masaru Sasago,“Polymer design in surface modification resist process for ArF lithography”,Proc. SPIE,Vol.3333,2-10,1998. 42.L. F. Thompson,C. G. Wilson,M. J. Bowden,“Introduction to microlithography”,ACS Symposium Series 219,ACS, Washington,87,1983. 43.王德海,江欞,“紫外光固化材料理論與應用”,北京科學出版社, 2001. 44.洪大凡,“AZ61鎂合金管材之熱擠成形性探討”,國立台灣科技大學碩士論文,2006. 45.C. A. Mack,“Depth of focus”,Microlithography World,20-21,1995. 46.鄭春生,“品質管理修訂版”,育友圖書,1999. 47.楊素芬,“品質管理”,華泰文化事業股份有限公司,2002. 48.劉漢容,“品質管制”,三民書局,2003. 49.陳耀茂, 黃廷彬,“品質工程Excel應用手冊”,中國生產力中心,2006. 50.H. J. Jeea,E. Sachsb,“A visual simulation technique for 3D printing”,Advances in Engineering Software,Vol.31,97-106,2000. 51.黃廷彬,蔡春榮,“田口式品質工程技術手冊”,中國生產力中心,1994. 52.羅錦興,“田口品質工程指引”,中國生產力中心,1999. 53.吳玉印,“新版實驗設計法”,中興管理顧問公司,1988. 54.李輝煌,“田口方法品質設計的原理與實務”,高立圖書有限公司,2000. 55.G. Taguchi,“Introduction to Quality Engineering: Designing Quality into Products and Processes”,UNIPUB,1986. 56.蘇朝墩,“品質工程”,中華民國品質管制學會,2002. 57.立林和夫,“入門田口方法”,臺北市 中衛發展中心發行,2008. 58.G. Taguchi,“Introduction to Quality Engineering”,Asian Productivity Organization,Tokyo,1990. 59.Z. J. Su,“Introduction of nano-particle size measurement”,Journal of the Mechatronic Industry,Vol.255, 2004. 60.呂維明,呂文芳,“過濾技術”,高立圖書有限公司,1994. 61.薛富盛,呂福興,吳宗明,許薰丰,黃榮鑫,趙文愷,“掃描式電子顯微鏡實作訓練教材”,五南圖書出版股份有限公司,2009. 62.田口玄一著,陳耀茂譯,“田口統計解析法”,五南圖書出版公司,2003.
摘要: 微影製程之主要目的是將光罩上的圖案精確地轉移至光阻層上,在微影製程文獻上,絕大部份都在探討半導體上之應用,相較於此,關於微影製程使用於黑色光阻上之相關文獻非常少,因此本研究決定以黑色光阻為材料,藉由靜態及動態田口方法探討微影製程,並且找出微影製程之最適化條件,以降低黑色矩陣之間線距與光罩圖案寬度之間尺寸差異的變異為目的,獲得較佳之光罩轉移精確性。 本實驗主要分為兩大部分,第一部分根據文獻得知M-1000碳黑顏料分散液之最佳配方,利用機械研磨方式製作出碳黑顏料分散液,藉由探討研磨時間對碳黑分散液粒徑的影響,選擇出三種不同粒徑大小之碳黑顏料分散液來作為田口品質工程之碳黑粒子大小的三個水準,然後將得到的三種不同粒徑大小之碳黑顏料分散液分別加入感光性樹脂中測其黏度值,最後探討光阻黏度對黑色光阻厚度之影響,並且由FE-SEM得知光阻於不同轉速下之黑色光阻厚度。 第二部分則是利用動態及靜態之田口方法分別對1.2μm、1μm、0.8μm之黑色光阻厚度進行探討,並且利用L18直交配製表、S/N比及變異數分析做為工具,決定出微影製程中各控制因子之水準最佳化組合,實驗結果顯示:從 (1)靜態田口實驗之0.8μm黑色光阻得知,影響此系統的尺寸差異最顯著之控制因子為顯影劑種類,且由增益值提升19.86db亦可知,最適化條件之尺寸差異確實比現行條件之尺寸差異佳,從光學顯微鏡500x下,最適化條件所得到的黑色矩陣之間線距為18μm。 (2)靜態田口實驗之1μm黑色光阻得知,影響此系統的尺寸差異最顯著之控制因子為顯影溫度,且由增益值提升10.93db亦可知,最適化條件之尺寸差異確實比現行條件之尺寸差異佳,從光學顯微鏡500x下,最適化條件所得到的黑色矩陣之間線距為18μm。 (3)靜態田口實驗之1.2μm黑色光阻得知,影響此系統的尺寸差異最顯著之控制因子為軟烤溫度,且由增益值提升7.95db亦可知,最適化條件之尺寸差異確實比現行條件之尺寸差異佳,從光學顯微鏡500x下,最適化條件所得到的黑色矩陣之間線距為18μm。 (4)從0.8μm、1μm、1.2μm之黑色光阻與尺寸差異之間的動態特性,增益值提升2.08db及動態零點比例式可知,最適化條件之尺寸差異確實比現行條件之尺寸差異佳。 由此可知透過動態及靜態之田口實驗所得的最適化條件,均可以達到我們想要之目標,降低尺寸差異之變異,得到較佳的光罩轉移精確性。
The main purpose of lithography processes is to accurately transfer the pattern on the mask onto the photoresist layer. The vast majority of literatures on lithography processes involve semiconductor application related explorations. Relatively, literatures pertaining to lithography process applications in black matrices remain scarce. Hence, photoresist solution with carbon black as the material and through the static and dynamic Taguchi method, the lithography processes was evaluated in this paper to find the optimal conditions for the lithography processes. With “reducing the dimension difference between the difference in line distance between black matrices and mask pattern widths” as the purposes, better mask transfer accuracy was obtained. This experiment is mainly divided into two parts: in the first part, the best formula of M-1000 carbon black pigment dispersion liquid was obtained according to the literatures. Through mechnical grinding, carbon black pigment dispersion liquid was produced. Then, after discussing the relationship between the grinding time and the particle size of the carbon black dispersion, three kinds of carbon black pigment dispersion liquids with different particle sizes were selected, which served as the three standards for the carbon black particle sizes in follow-up Taguchi quality engineering. After that, the carbon black pigment dispersion liquids of three different particle sizes obtained were added into photosensitive resin to measure the viscosity values. Finally, the impact of the photorsist layer viscosity on the black photoresist film thickness was evaluated, and the black matrix film thicknesses of the photoresist liquid under different rotation speeds were obtained through FE-SEM. In the second part, the static and dynamic Taguchi method was adopted to evaluate the black photoresist films in the sizes of 1.2μm, 1μm, and 0.8μm. Additionally, with the L18 orthogonal array, S/N ratio, and analysis of variance as the tools, the optimal conditions of the various control factor in the lithography processes were determined. The experimental results show that: (1)Based on the 0.8μm black matrix film in the static Taguchi experiment, it was found that the most significant control factor affecting the system dimension differences was the developing agent type. In addition, based on the gain value that was increased to 19.86db, it was also found that dimension differences under the optimal conditions indeed shows a better differentiation compared to the dimension differences under the existing conditions. Under the optical microscope of 500x, the line distance between black matrices obtained under the optimal condition was 18μm. (2)Based on the 1μm black matrix film in the static Taguchi experiment, it was found that the most significant control factor affecting the system dimension differences was the developing agent temperature. In addition, based on the gain value that was increased to 10.93db, it was also found that dimension differences under the optimal conditions indeed shows a better differentiation compared to the dimension differences under the existing conditions. Under the optical microscope of 500x, the line distance between black matrices obtained under the optimal condition was 18μm. (3)Based on the 1.2μm black matrix film in the static Taguchi experiment, it was found that the most significant control factor affecting the system dimension differences was the soft bake temperature. In addition, based on the gain value that was increased to 7.95db, it was also found that dimension differences under the optimal conditions indeed shows a better differentiation compared to the dimension differences under the existing conditions. Under the optical microscope of 500x, the line distance between black matrices obtained under the optimal condition was 18μm. (4)The dynamic characteristics is between the dimension differences amd black matrix film thicknesses of 0.8μm, 1μm, and 1.2μm, the gain value that was increased to 2.08db, and the dynamic zero ratio, it was found that the dimension differences under the optimal conditions indeed shows a better differentiation compared to the dimension differences under the existing conditions. It can therefore be inferred that through the optimal conditions obtained from the dynamic and static Taguchi experiment, the targets can be achieved, thereby reducing the variability of the dimension differences and deriving at better mask transfer accuracy.
URI: http://hdl.handle.net/11455/3272
其他識別: U0005-1207201209403100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1207201209403100
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.