Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/33002
標題: 1960後過度開發引發鹹海大規模的削減
LARGE-SCALE DESICCATION OF THE ARAL SEA DUE TO OVER-EXPLOITATION AFTER 1960
作者: 卡布萊夫
Behzod, Gaybullaev
關鍵字: Aral Sea
Aral Sea
Salinity
Irrigation
Evaporation
Water Volume
Pearson Correlation
Multiple Linear Regression
ANOVA
Salinity
Irrigation
Evaporation
Water Volume
Pearson Correlation
Multiple Linear Regression
ANOVA
出版社: 水土保持學系所
引用: Aladin, N. V., Potts, W. T. W., (1992). Changes in the Aral Sea ecosystem during the period 1960-1990. Hydrobiologia, 237:67–79. Alamanov, S. K., Lelevkin, V. M., Podrezov, O. A., & Podrezov, A. O. (2006). Climate changes and water problems in Central Asia. UNEP, Moscow (in Russian). Alieva, D., (2008). Reproductive health in females of the Aral Sea area. Gynecology Obstet., pp.70:64. Alley, W. M., (1984). On the treatment of evapotranspiration, soil moisture accounting, and aquifer recharge in monthly water balance models. Water Resources Research, 20:1137–1149. Alley, W. M., (1985). Water balance models in one month ahead streamflow forecasting. Water Resources Research, 21:597–606. Aralgenefund, (2013). Evolution of the Aral Sea. http://aralgenefund.org/eng/evolution/, Accessed: 15 March, 2013. Ashirbekov, U. A., Zonn, I. S., (2003). ARAL: the history of dying sea. IFAS report, Dushanbe, http://www.preventionweb.net/files/1767_VL102300.pdf, Accessed: 15 September, 2012. Bari, A., (2011). Environmental Challenges of the Aral Sea and the Aral Sea Area. Regional Report, Nukus, Uzbekistan (In Uzbek). Baidal, M. K., (1973). "The question of the scales and forms of realizations of the effect of solar activity (Solar activity effects on terrestrial climate)." Benduhn, F., Renard, P., (2004). A dynamic model of the Aral Sea water and salt balance. J. Marine System, 47:35–50. Bortnik, V. N., (1999). Alteration of water level and salinity of the Aral Sea. In Glantz, M. H. Creeping environmental problems and sustainable development in the Aral Sea basin. Camb. Univ. Press, pp. 47–66. Bortnik, V. N., (1996). Changes in the water-level and hydrological balance of the Aral Sea. In: Micklin, P. P., Williams, W. D (eds). The Aral Sea basin. Springer, Berlin, pp. 25–32. Bortnik, V. N., Kuksa, V. I., Tsytsarin, A. G., (1991). Present state and possible future of the Aral Sea. Izv AN SSR, Ser. Geography, 4:62–68 (in Russian). Breckle, S. W., Wucherer, W., Agachanjanz, O., Geldyev, B. V., (2001). The Aral Sea crisis region. In: Breckle, S. W., Veste, M., Wucherer, W (eds). Sustainable land use in deserts. Springer, Berlin, pp. 27–37. Breckle, S. W., Wucherer, W., (2005). Hat der Aralsee eine Zukunft (Has the Aral Sea a future). In: Lozan, J. L., Grasl, H., Hupfer, P., Menzel, L., Sch€onwiese, Ch. D (Hrgs.). Warnsignal Klima: Genug Wasser f€ur alle? Wissenschaftliche Auswertungen/Hamburg, in Kooperation mit GEO, pp. 131–135 (in German). Berg, L. S., (1908). The Aral Sea. Scientific results of Aral Expedition. Izvestiya Turkestanskogo otdeleniya Imperatorskogo Russkogo Geograficheskogo obschestva, Sankt Peterburg, 5(9) (in Russian). Boomer, I., Aladin, N., Plotnikov, I., Whatley, R., (2000). The palaeolimnology of the Aral Sea: a review. Quaternary Sci. Rev., 19:1259–1278. Bjorklund, G., (1999). The Aral Sea – water resources, use and misuse. In: K, Lindhal, Kiessling (ed.). Alleviating the Consequences of an Ecological Catastrophe. Swedish Uniform Committee, Stockholm. pp 42–50. Crighton, E. J., EIIiott, S. J., Upshur, R., et al., (2003). The Aral Sea disaster and self-rated health. J. Health and Place, 9(2):73–82. Central Asian States (CAS), (2000). State of Environment of the Aral Sea basin. Regional Report of the CAS 2000. www.grida.no/aral/aralsea/-english/arsea/arsea.htm, Accessed: 25 May, 2012. CAWATER, (2013). Bathymetric characteristics of the Aral Sea. http://www.cawater-info.net/aral/data/tabs_e.htm. Accessed: 15 March, 2013. CAWATER, (2012). Butakov’s map of the Aral Sea, Source: Monograph “South Prearalie — New Perspectives”, НИЦ МКВК, 2003, http://cawater-info.net/aral/data/butakov_e.htm, Accessed: 10 October, 2012. CAWATER, (2012). Precipitations, Source: Project CAREWIB, http://cawater-info.net/aral/data/precip_e.htm, Accessed: 20 September, 2012. CAWATER, (2012). Average air temperature over weather stations, the Aral Sea, http://cawater-info.net/aral/data/ave_temp_e.htm, Accessed: October 11, 2012. CAWATER, (2012). Change in climate, runoff of major rivers in Central Asia, level and size of the Aral Sea over the last 20 thousand years, (Source: Trofimov, G. N. Paleoclimatic situation, runoff of ancient rivers and water balance of the Aral Sea in late Pleistocene and Holocene), http://cawater-info.net/aral/data/paleo_e.htm, Accessed: 2 October, 2012. CIA, Central Intelligence Agency. (2012). The WORLD FACTBOOK, Central Asia, Uzbekistan, https://www.cia.gov/library/publications/the-world-factbook/geos/uz.html, Accessed: 15 September, 2012. Daily Telegraph, (2013). Aral Sea one of the planet’s worst environmental disasters. The Daily Telegraph, London, UK, Accessed: 25 March, 2013. Dukhovny, V. A., Navratil, P., Ruziev, I., Stulina, G., Ye, R., (2008). Comprehensive remote sensing and ground-based studies of the dried Aral Sea bed. SIC ICWC, Tashkent. Dinar, A., Dinar, S., McCaffrey, S., and McKinney, D., (2007). Bridges over water: understanding transboundary water conflict, negotiation and cooperation. Singapore, World Scientific Publishing Co. Pte. Ltd. Djalalov, S., (2005)."Implicit taxation of Uzbekistan’s cotton sector: estimation and policy consequences.’." Paper presented ate the SOAS Conference ‘Cotton in Central Asia. Erdinger, L., Hollert, H., Eckl, P., (2011). Aral Sea: An Ecological Disaster Zone with Impact on Human Health. Encyclopedia of Environmental Health, Elsevier/Burlington, pp. 136–144. ENS, Environment News Service, (2012). “The Kazakh Miracle: Recovery of the North Aral Sea”, http://www.ens-newswire.com/ens/aug2008/2008-08-01-01.asp, Accessed: 28 September, 2012. Elpiner, L., (1999). Public health in the Aral Sea coastal region and the dynamics of changes in the ecological situation. In: Glantz, M. H (ed). Creeping environmental problems and sustainable development in the Aral Sea Basin. Cambridge University Press, UK, pp. 47–66. Francois, B., Philippe, R., (2004). A dynamic model of the Aral Sea water and salt balance. J. Marine Systems, 47:35–50. Forkutsa, I., (2006). Modeling water and salt dynamics under irrigated cotton with hallow groundwater in the Khorezm region of Uzbekistan. University Bonn ZEF, Series Ecol. Devel., 37:155–158. Gel’dyeva, G. V., Breckle, S. W., Gel’dyev B. V., (2012). Aralkum-a Man-Made Desert: Geography and Geomorphological and Lithological Characteristics of the Aralkum. Egological Studies, 218:37–48. Giese, E., Bahro, G., Betke, D., (1998). Umweltzerst€orungen in Trockengebieten Zentralasiens (Environment destruction in dry areas of Central Asia) (West- und Ost-Turkestan). In: Ursachen, Auswirkungen, Masnahmen (Causes, consequences, measures), vol 125. Erdkundliches Wissen, Stuttgart (in German). Glantz, M. H., (1999). Creeping environmental problems and sustainable development in the Aral Sea Basin. Cambridge University Press, Cambridge, pp. 47–66. Glantz, M. H., Rubinstein, A. Z., Zonn, I., (1993). Tragedy in the Aral Sea basin: Looking back to plan ahead?, Glabal Envin. Change, 3(2):174–198. Glazovsky, N. F., (1990). A concept on the resolving of the Aral Crisis. Proceeding of the USSR Academia Sciences, Geog Ser 4:28–41 (in Russian). Gulnara, R., Natalia, A., Nikolai, A. et al., (2003). Aral Sea. Lake Basin Management Initiative Experience and Lessons Learned Brief. http://www.worldlakes.org/uploads/aralsea_30sep04.pdf, Accessed: 01 January, 2012. Hintze, J., (2012). NCSS8 and PASS11, Number Cruncher Statistical Systems, Kaysville, UT, www.ncss.com, Accessed: 26 October, 2012. Islamov, A. B., (1998). Aral Sea Catastrophe: Case for National, Regional and International Cooperation, by the Slavic Research Center. http://src-h.slav.hokudai.ac.jp/sympo/97-summer/islamov.html, Accessed: 27 December, 2011. Ivanova, L. V., (1992). Hydrological aspects of the Aral Sea problem. Vodnye Resursy 2:39–49 (in Russian). Jarsjo, J., Destouni, G., (2004). Groundwater discharge into the Aral Sea after 1960. Mar. System, 47:109–120. JAXA, (2007). South Aral Sea shrinking but North Aral Sea expanding http://www.eorc.jaxa.jp/-en/imgdata/topics/2007/tp071226.html, Accessed: 15 October, 2012. Kirsta, V. T., (1989). Problema Aralskogo morya i Karakumskii kanal (Problem of the Aral Sea and Karakum canal). Probl osvoeniya pustyn, 5:10–17 (in Russian). Kostianoy, A. G., (2006). Dead and dying Seas. Encyclopedia of Water Science, Taylor and Francis. doi:10.1081/E-EWS-1200042068. Kenney, J. F., Keeping, E. S., (1962). Linear Regression and Correlation. Ch. 15 in Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, pp. 252–285. Letolle, R., Mainguet, M., (1996). Der Aralsee. Eine €okologische Katastrophe (The Aral Sea. An ecological disaster). Springer, Berlin (in German). Lvov, V. P., (1959). The Aral Sea level fluctuations in the last 100 years. Tr, GOIN 46:80–114 (in Russian). LeCallonnec, L., Person, A., Renard, M., Le’tolle, R., Nebout, N., Khelifa, L. B., Rubanov, I., (2005). Preliminary data on chemical changes in the Aral Sea during low-level periods from the last 9000 years. Compt, R. Geosci., 337:1035–1044. Legates, D. R., Mather, J. R., (1992). An evaluation of the average annual global water balance. Geographical Review, 82:253–267. Legates, D. R., McCabe, G. J., (2005). A re-evaluation of the average annual global water balance. Physical Geography, 26:67–479. L''vov, B. K., (1965). "Petrologiya, mineralogiya i geokhimiya granitoidov Kochkarskogo rayona (Yuzhnyy Ural) (Petrology, Mineralogy and Geochemistry of Granites of the Kochkar''District, Southern Urals)." Izd. Leningr. gos., univ. Mather, J. R., (1969). The average annual water balance of the world. In: Symposium on Water Balance in North America, Series No. 7, Proceedings: Banff, Alberta, Canada, American Water Resources Association, pp. 29–40. Mintz, Y., Serafini, Y. A., (1992). A global monthly climatology of soil moisture and water balance. Climate Dynamics, 8:13–27. Michael, W., (2002). Grand Soviet Scheme for Sharing Water in Central Asia is Foundering. The New York Times. http://query.nytimes.com/gst/fullpage.html?res=9D03E4DA1F3BF93AA35751C1A9649C8B63&sec=&spon=&pagewanted=all, Accessed: 15 January, 2013. Micklin, P. P., (2007). The Aral Sea Disaster. Annual Review, Earth Plan. Sci., 35(4):47–72, 10.1146/annurev.earth.35.031306.140120. Micklin, P. P., (2004). Aral Sea Crisis. In: Nihoul, C. J., Zavialov, P. O., Micklin, P. P (eds). Dying and Dead Seas: climatic versus anthropogenic causes. NATO Sci. Ser. Kluwer Acad. Pub., Dordrecht, pp. 99–123. Micklin, P. P., Aladin, N. V., (2008). Reclaiming the Aral Sea. Scientific American, pp. 64–71. Melnikova, A. P., (1994). Klimaticheskii faktor v kolebaniyakh urovnya Arala (Climate impact on the fluctuations of the sea water level of the Aral Sea). Izv ANSSSR, Ser. Geogr. 4:26–36 (in Russian). Mikhailov, V. N., Kravtsova, V. I., Gurov, F. N., et al., (2001). Assessment of the present day state of the Aral Sea. Vestnik Moskovskogo Universiteta (Moscow University Gerald). Serial 5, Geography 6:14–21 (In Russian with English abstract). McCabe, G. J., Ayers, M. A., (1989). Hydrologic effects of climate change in the Delaware River basin. Water Resources Bulletin, 25:1231–1242. McCabe, G. J., Wolock, D. M., (1992). Sensitivity of irrigation demand in a humid-temperate region to hypothetical climatic change. Water Resources Bulletin, 28:535–543. NewScientist report, (1989). “Soviet cotton threatens a region''s sea - and its children” http://www.newscientist.com/article/mg12416910.800-soviet-cotton-threatens-a-regions-sea--and-its-children.html, Accessed: 13 February, 2012. Nash, J. E., Sutcliffe, J. V., (1970). River flow forecasting through conceptual models. Part 1– A: discussion of principle. J. Hydrol., 10:282–290. Oberh€ansli, H., Zavialov, P., (2009). Aral Sea Basin hydrological, chemical and biological dynamics today, compared with trends of the past 50 years. J. Marine Syst., 76:251–253. Oroud, I. M., (1999). Temperature and evaporation dynamics of saline solutions. Journal of Hydrology, 226:1–10. Oteniyazov, E., (2005). Ecologic situation of the Aral Sea region. NATO Science Series 1: 13–16. Paul, E. A., Morris, S. J., Conant, R. T., & Plante, A. F. (2006). Does the acid hydrolysis–incubation method measure meaningful soil organic carbon pools?. Soil Science Society of America Journal, 70(3), 1023-1035. Ptichnikov, A., (2002). Sustainable development of ecology, land and water use through implementation of a GIS and Remote Sensing Centre in Karakalpakstan. Bulletin 3, NATO Science Peace Project. 974101. Uzbekistan, Moscow (In Russian with English abstract). Peneva, E. L., Stanev, E. V., Stanychni, S. V., Salokhiddinov, A., Stulina, G., (2004). The recent evolution of the Aral Sea level and water properties: analysis of satellite, gauge and Hydrometeorological data. J. Marine Syst., 47:11–24. Qin, B. Q., Huang, Q., (1998). Simulation of energy and water budget of Qinghai Lake, China. Chinese Journal of Oceanalogy and Limnology, 16:289–297. Rodgers, J. L., Nicewander, W. A., (1988). Thirteen ways to look at the correlation coefficient. J. American Statis., 42(1):59–66. Russian Nature, (2012). Environmental problems of Northern Eurasia, The Aral Sea: Lake Changes. http://www.rusnature.info/env/22_3.htm, Accessed: 15 November, 2012. Russian Nature, (2012). Environmental problems of Northern Eurasia, The Aral Sea: The Expansion of Irrigation. http://www.rusnature.info/env/22_2.htm, Accessed: 17 November, 2012. Snesarev, A. E., (2002). Afghanistan 2002. Art. 63 Salokhiddinnov, A. T., Khakimov, Z. M., (2004). Ways the Aral Sea behaves. J. Marine Syst., 47:127–136. Sevastyanov, D. V., Smirnova, N. P., (1986). Issyk-Kul Lake and the tendency of its natural development. Nauka, Leningrad, p. 256 (In Russian). Shawki, B., (2006). “Case Study of the Aral Sea Water and Environmental Management Project. http://water.worldbank.org/water/publications/case-study-aral-sea-water-and-environmental-management-project-independent-evaluation-w, Accessed: 15 November 2012. Stigler, S. M., (1989). Francis Galton''s Account of the Invention of Correlation. St. Sci., 4(2):73–79. THERMO, (2012). The mean monthly precipitation, the Aral Sea, http://thermo.karelia.ru/weather/w_precips_ru_amo.shtml, Accessed: 25 September, 2012. THERMO, (2012). The mean air temperature, the Aral Sea, http://thermo.karelia.ru/weather/w_precips_ru_amo.shtml, Accessed: 25 November, 2012. Trofimov, G.N., (2008). Paleoclimatic situation, runoff of ancient rivers and water balance of the Aral Sea in late Pleistocene and Holecene (In Russian), http://kungrad.com/aral/seahist/isshez/isshez6/, Accessed: 23 September, 2012. Thornthwaite, C, W., (1948). An approach toward a rational classification of climate. Geographical Review, 38:55–94. UNESCO, (2000). Water related vision for the Aral Sea basin for the year 2025. UNESCO, Paris, p. 237. UNDP, (2007). Water, critical resource for Uzbekistan’s future. UNDP Program, Tashkent, Uzbekistan, p. 121. UNDP, (2008). Review of Donor Assistance in the Aral Sea Region, UNDP, Tashkent, Uzbekistan. http://www.undp.uz/en/publications/publication.php?id=99, Accessed: 01 October, 2011. USDA-Foreign Agriculture Service, (2008). Cotton Production Ranking. National Cotton Council of America. http://www.cotton.org/econ/cropinfo/cropdata/rankings.cfm, Accessed: 03 October, 2012. US Geological Survey, (2007). Aral Sea, Central Asia, 1964, 1973, 1987, 1999. http://ear-thshots.usgs.gov/Aral/Aral, Accessed: 15 November, 2011. Viktor, D., (2011). Uzbekistan on the way to overcome the Aral Sea disaster. Regional Report, Nukus, Uzbekistan (In Uzbek). Walter, H., (1974). Die Vegetation Osteuropas, Nord- und Zentralasiens. Vegetationsmonographien der einzelnen Grosr€aume, vol 7. Fischer, Stuttgart. Wolock, D. M., McCabe, G. J., (1999). Effects of potential climatic change on annual runoff in the conterminous United States. Journal of the American Water Resources Association, 35:1341–1350. Zavialov, P. O., Kostianov, A. G., Emelianov, S. V., et al., (2003). Hydrographic survey in the dying Aral Sea. Geophysical Research letter, 30(13):1959-1971. Zawadzki, I., (1973). Statistical properties of precipitation patterns. J. Appl. Meteor., 12:459–472.
摘要: 位於中亞的鹹海是廣為人知的高鹽分內陸流域,1960年時其面積約68,000平方公里,水體體積約1,093立方公里,自1960年開始,由於作為灌溉用水,使鹹海面積開始縮減,由於湖水補注不足,造成在1987年時鹹海縮減且分裂成南、北兩個湖(南方的湖面較大,故本文後以大、小湖區分)根據調查於2011年時整個鹹海已較早期縮小了83% 的湖面積以及93% 的水體體積,同時對其鄰近環境造成嚴重的衝擊。 研究中,利用整個鹹海流域於1960年到2000年之降水、逕流以及蒸發量資料,其計算水體積與鹽度,由Nash-Sutcliffe model 預期水體積有效係數為0.975及鹽度為0.974,利用回歸方程式計算2010年到2021年之降雨、逕流、蒸發量,再進一步推估出2021年時,鹽度為200 g/l以及水體體積將減少83 km3。 研究中使用皮爾森相關係數以及複線性回歸,分別計算兩湖之水體體積、降水、逕流、蒸散量、水位高,並使用Holt''s Linear Trend Forecasts Method預估2010年到2025年兩湖之水體體積與鹽度。 在小湖的計算結果中,皮爾森相關係數於水體面積與水體體積為 (r = 0.942)、蒸發量與Syr Darya 逕流為(r = 0.722),兩者皆為高顯著相關;相關性於水面高與水體體積為(r = 0.547, p = 0.005)、Syr Darya 逕流與降水為(r = 0.523, p = 0.031)兩者皆為顯著相關;相關性於水體體積與蒸發量為(r = -0.444)、蒸發量與水體面積(r = -0.449, p = 0.070),兩者皆為負相關。 本研究中複線性回歸回歸結果顯示,R=0.972、R2 =0.94、Adjusted R2 = 0.918,小湖的變異數分析為高顯著性(F = 36.989, p–value was 0.000)根據統計推論,小湖於2025年時,水體體積將增加22.8 km3、鹽度提升至接近190 g/l。 在大湖的計算結果中,皮爾森相關係數於水體體積與降水為 (r =0.709)、蒸發量與水體體積為(r = 0.743)、水體面積與水體體積為(r = 0.962)、水面高與水體體積為(r = 0.784)、Syr Darya 逕流與降水為(r = 0.845)皆為高顯著性; 本研究中複線性回歸回歸結果顯示,R =0.984、R2 = 0.969 、Adjusted R2 = 0.951,大湖的變異數分析為高顯著性(F = 55.798, p= 0.000)根據統計推論,大湖於2025年時,水體體積將減少2.4 km3、鹽度提升至接近200.7g/l。
The Aral Sea is a landlocked and well-known saline endorheic basin in Central Asia. It was covered an area of 68,000 km2 and had a volume of 1,093 km3 in 1960. From 1960 onwards the lake started to shrink because of rivers water utilized for irrigation purposes. Due to irrigation, water was used enormously activities, without sufficient water supply for its watershed, the lake has shrunk and separated into two parts: the Small Aral Sea in the north and the Large Aral Sea on the south at 1987. According to the recent survey, the entire Aral Sea has lost 87% of water surface area, 93% of water volume in 2011, and has an environmental disaster areas its surround. The Aral Sea (entire) observed data of precipitation, runoff, and evaporation in the watershed were used to estimate water volume and salinity in the lake from 1960 to 2009; the Nash-Sutcliffe model efficiency coefficient for predictive water volume and salinity were 0.975 and 0.974 respectively. Regression equations were used to estimate corresponding magnitudes of precipitation, runoff, evaporation, and salinity from 2010 to 2021, and applied in the estimations of the water volume and salinity. Our estimates suggest that salinity will increase to around 200 g/l and that water volume will decrease to around 83 km3 in 2021. We have computed the water volume, runoff, precipitation, evaporation, water surface area, and water level of the Small Aral Sea and Large Aral Sea by using the Pearson correlation coefficient and a multiple linear regression. Holt''s Linear Trend Forecasts Method was used to predict the water volume and salinity of the Small Aral Sea and the Large Aral Sea from 2010 to 2025. In the Small Aral Sea, the Pearson correlation between the water surface area and water volume (r = 0.942), the Evaporation and Syr Darya runoff (r = 0.722) were highly significant. The relationship between the water level and water volume (r = 0.547, p = 0.005), the Syr Darya runoff and precipitation (r = 0.523, p = 0.031) were significant. The correlation among the water volume and evaporation (r = -0.444), the evaporation and water surface area (r = -0.449, p = 0.070) were silently negative as our resulted. In this study, multiple linear regression analysis demonstrated that the R stands for the relation between the dependent and independent variables were 0.972, R2 values indicates that 94%, and the Adjusted R2 = 0.918. Our ANOVA results of the Small Aral Sea water volume was highly significant, F = 36.989, p–value was 0.000. The prediction results were indicated that the water volume of the Small Aral Sea will be increased to around 22.8 km3, and salinity of the Small Aral Sea will rise to approximately 190 g/l by 2025. The Large Aral Sea Pearson correlation between the water volume and precipitation (r = 0.709), the water volume and evaporation (r = 0.743), the water volume and water surface (r = 0.962), the water volume and water level (r = 0.784), the Amu Darya runoff and precipitation (r = 0.845) were high significantly. The multiple linear regression analysis showed that the R stands for the correlation between the water volume and independent variables were 0.984, R2 = 0.969, and the Adjusted R-square = 0.951. ANOVA results shows that the contrast was highly significant, F = 55.798, p= 0.000. Our prediction suggests that the Large Aral Sea water volume will decreases to around 2.4 km3, and salinity will be raised to around 200.7 g/l in 2025.
URI: http://hdl.handle.net/11455/33002
其他識別: U0005-2706201314302700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2706201314302700
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.