Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/33008
標題: FDM應用於烏溪揚塵推估之探討
A Study on Estimation of Wu River Fugitive Dust by FDM
作者: 張台聖
Chang, Tai-Sheng
關鍵字: FDM
FDM
風洞
混合層高度
Wind tunnel
Mixing layer height
出版社: 水土保持學系所
引用: 1. 史寶忠、鄭方成、曹國良(1977),對大氣混合層高度確定方法的比較分析,西安建築科技大學學報,29(2):138-141。 2. 行政院環保署(2006),中部地區地區河川揚塵對空氣品質影響調查評估專案工作計畫,中山醫學大學執行。 3. 行政院環保署(2008),河川揚塵對中部大氣懸浮微粒影響程度之評估專案工作計畫,中山醫學大學執行。 4. 行政院環保署空氣品質監測網-氣象資料下載http://taqm.epa.gov.tw/taqm/zh-tw/YearlyDataDownload.aspx 5. 行政院環保署空氣品質監測網-逆溫測站 http://taqm.epa.gov.tw/taqm/zh-tw/b0105.aspx 6. 朱佳仁(2006),風工程概論,科技圖書。 7. 邱嘉斌(2004),台灣中部都會與沿海地區PM2.5及PM2.5-10氣膠化學組成及污染源貢獻量之研究,國立中興大學環境工程學系博士論文。 8. 林家慶(2008),鹿林山空氣背景監測站之背景值分析,國立中央大學大氣物理研究所碩士論文。 9. 金門縣衛生局(1998),粒狀物污染成因探討,新系環境技術有限公司執行。 10. 范姜明威(2010),台灣中部河口飛砂及揚塵之調查與研究,國立中興大學水土保持學系碩士論文。 11. 馬金、鄭向東(2011),混合層厚度的經驗計算及與探空觀測對比分析,應用氣象學報22(5):567-576。 12. 莊秉潔(1993),地表層擴散係敏、風速、雨量及混合層高度對台北都會早上八時懸浮塵微粒濃度之影響,中國環境工程學刊,3(2):95-102。 13. 陳世芳(2004),混合層高度診斷方法之研究,國立台灣大學環境工程研究所碩士論文。 14. 陳天慈(2011),FDM應用在濁水溪河口pm10推估之探討,國立中興大學水土保持學系碩士論文。 15. 程水源、張寶寧、白天雄、金寧(1992),北京地區大氣混合層高度的研究及氣象特徵,環境科學叢刊,13(4):46-52。 16. 經濟部水利署網站 http://www.wra.gov.tw/default.asp 17. 廖國蓮(2005),大氣混合層厚度的計算方法及影響因子,中山大學研究生學刊(自然科學,醫學版),26(4):66-72。 18. 劉昱麟(2011),以數值方法探討河口揚塵排放行為,國立中興大學水土保持學系碩士論文。 19. 蔣本基等(1990),北桃地區空氣汙染受體模式應用之研究(一),行政院環境保護署期末報告,EPA-79-002-18-096。 20. Abbott M.L (1999) Air dispersion modeling of mine waste in the southeast missouri old lead belt, Idaho National Engineering and Environmental Laboratory. 21. Cheng S.Y, Huang G H, Chanhma A, et al. (2001) Estimation of atmospheric mixing heights using data from airport meteorological stations. J Environ Sci Health, 36(4):521-532. 22. Eagleson P.S (1970) Dynamic hydrology. McGraw Hill, p.462. 23. Ermak D.L (1977) An analytical model for air pollutant transport and deposition from a point source, Atmospheric Environment, Vol.11, p.231-237. 24. George C. Holzworth (1964) Estimates of mean maximum mixing depths in the contiguous united states. Mon Wea Rev, 92:235-242. 25. Jason A. Roney, Bruce R. White (2004) Definition and measurement of dust aeolian thresholds, Journal of Geophysical Research,Earth Surface 109, F01013. 26. Jason A. Roney, Bruce R. White (2006) Estimating fugitive dust emission rates using an environmental boundary layer wind tunnel. Atmospheric Environmental,40:7668-7685 27. Monin A.S and Obukhov A.M (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere, Tr.Geofiz. Instit. Akad. Nauk,S.S.S.R No.24,151,p.163-187 28. Nozaki K Y. (1973) Mixing depths model vsing hourly surface observations. USAF Envirinmental Technical Applications Center, Report 7053. 29. O’Doherty S, Simmonds P.G, et al. (2001) In situ chloroform measurement at advanced global atmospheric gases experiment atmospheric research stations from 1994 to 1998, J. Geophys. Res., 106(D17), 20429-20444. 30. Sabah A. Abdul-Wahab (2006) Impact of fugitive dust emissions from cement plants on nearby communities, Ecological Modeling Volume 195, Issues 3-4, p. 338-348. 31. Sivacoumar R, Mohan Raj S, Chinnadurai Jeremiah and Jayabalou R (2009) Modeling of fugitive dust emission and control measures in stone crushing industry, Journal of Environmental Monitoring. 32. USEPA (1992) User''s Guild for the Fugitive Dust Model(FDM) User Instruction,Volume I. 33. Yang K.L. (2002) Spatial and seasonal variation of PM10 mass concentrations in Taiwan. Atmos. Environ. 36:3403-3411.
摘要: 本研究採用FDM(Fugitive Dust Model)數值模式來模擬烏溪鄰近地區揚塵擴散之情形。研究中從事風洞試驗重新建立烏溪揚塵量(PM10)與風速之關係式,以修正揚塵量之高估,並探討無探空資料時混合層高度參數應用之方法,另外,在FDM中採用面源設置,以配合河川裸露地面積及位置之變化,而後針對烏溪下游裸露地進行FDM揚塵模擬。首先,分析不同裸露地塊數模擬值之比對,據以說明FDM對河川揚塵推估之適用性,接著探討鄰近測站氣象資料之選用順序,並以Arc-GIS與Surfer進行繪圖與後續處理分析。 風洞試驗結果:將風洞高度剖面設置十個量測點並以控制體積之方式進行計算,其有效修正揚塵量高估之情況,而修正後烏溪揚塵量(PM10)與風速之關係式為: E = "5.63×" 〖" 10" 〗^"-7" 〖" U" 〗^"2.6952" 混合層高度參數之結果:以台中試區驗證結果說明,Nozaki法的正確性優於Holzworth法,因此,在無探空資料時,應用Nozaki法估算混合層高度能獲得較佳之結果。 烏溪FDM模式之執行結果:基準值7.4 (μg/m3-hr)介於三塊裸露地模擬值0.73 (μg/m3-hr)與四塊裸露地模擬值8.1 (μg/m3-hr)之間,應屬合理,因此,FDM應用於烏溪河川揚塵推估是值得信賴的。在氣象資料選用順序中,優先順序為新庄國小測站、西屯測站、彰化測站、沙鹿測站,最後為線西測站,然而,風向及風速是影響FDM揚塵範圍及濃度值的重要因素,因此,使用不同測站之氣象資料進行模擬時仍會有差異存在。
The research adopted the digital model of FDM (Fugitive Dust Model) to simulate the fugitive dust dispersion situation at the neighboring regions of Wu River. In the research, the wind tunnel test was implemented to re-establish the relation between Wu River fugitive dust quantity (PM10) and wind speed. This was to correct the overestimation of fugitive dust quantity. The application method of mixing layer height parameter at the time without sounding data was explored. Besides, area source setting was adopted in FDM to cooperate with the change of area and location of bare lands of the river. Then, the research aimed at the bare lands in downstream areas of Wu River to do FDM fugitive dust simulation later. Method: First of all, the simulation values of different number of bare lands were analyzed, and the comparison was done. Based on it, FDM’s applicability in river fugitive dust estimation could be explained. Next, the preferred order of meteorological data of nearby general air quality test stations was probed. Arc-GIS and Surfer were used to do drafting and subsequent analysis. Wind tunnel test results: To set up ten measuring points at the cross-section of the height of wind tunnel and use the way of volume control to do calculation could effectively correct the situation of fugitive dust quantity overestimation. The relation between Wu River fugitive dust quantity (PM10) and wind speed after revision was as follows: E = "5.63×" 〖" 10" 〗^"-7" 〖" U" 〗^"2.6952" The results of mixing layer height parameter: The test and verification results of Taichung Research Test Area could explain that the correctness of Nozaki method was more excellent than that of Holzworth method. Therefore, when there were no sounding data, applying Nozaki method to estimate mixing layer height could get better results. The execution results of Wu River FDM Model: The reference value 7.4 (μg/m3-hr) was between the simulation value of three pieces of bare land 0.73 (μg/m3-hr) and the simulation value of four pieces of bare land 8.1 (μg/m3-hr), and it was reasonable. Hence, the application of FDM in Wu River fugitive dust estimation was trustworthy. Regarding the preferred order of meteorological data, the preferred order was: General Air Quality Test Station of Sinjhuang Elementary School, of Xitun, of Changhua, of Shalu, and finally of Xianxi. However, the wind direction and wind speed were the important factors of influencing FDM particle pollution scope and the value of density. Therefore, the difference still existed when using meteorological data of different general air quality test station to do simulation.
URI: http://hdl.handle.net/11455/33008
其他識別: U0005-2008201215471600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008201215471600
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.