Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/33018
標題: 九份地滑地在降雨及地震條件下之穩定性評估
Evaluation of Stability on Chiu-Fen Landslide under Rainfall and Earthquake Conditions
作者: 張文瑄
Chang, Wen-Hsuan
關鍵字: 地滑地
landslides
地下排水工法
集水管
集水井
安全係數
地震
subsurface drainage works
rainfall seepage
rainfall induced ground movement
factor of safety (FS)
出版社: 水土保持學系所
引用: 1.王士榮(2002),以位移法分析自然邊坡在地震力作用下的平面式破壞,國立成功大學資源工程學系,碩士論文。 2.行政院農委會水土保持局(2005),「水土保持手冊」。 3.行政院農業委員會(1992),「崩塌地調查、規劃與設計手冊-地滑篇」。 4.朱聖心(2001)應用地理資訊系統製作地震及降雨所引致之山崩危險圖,國立台灣大學土木工程學研究所碩士論文 5.李正楠(2001)草嶺崩坍地受震行為初探,國立臺灣大學土木工程學研究所,碩士論文 6.李光敦(2005),水文學,五南圖書出版公司。 7.李馨慈(2004),應用累積位移法於地震引起之山崩潛勢分析,國立成功大學資源工程學系,碩士論文。 8.呂政諭(2001),地震與颱風作用下阿里山地區公路邊坡崩壞特性之研究,國立成功大學土木工程研究所,碩士論文。 9.青山顧問工程有限公司(2006),「九份地區地滑監測與評析第四期計畫」。 10.洪如江、林美聆、陳天健、王國隆(2000),921 集集大地震相關的坡地災害、坡地破壞特性、與案例分析,地工技術,第81期,pp.17–32。 11.范嘉程、馮道偉(2003),「以有限元素法探討暴雨時邊坡之穩定分析」,地工技術,第95期,61-74。 12.高贈智(2004),集集地震引致臺灣中部山區邊坡臨界滑移量之分析,國立臺灣大學土木工程學研究所,碩士論文。 13.陳世芳、黃清益(1979),「地層滑動及其防止對策之研究(1)」,台鐵資料月刊,186(6):1-9。 14.張國欽(2005),「邊坡在降雨入滲狀況下之穩定性分析與評估」,國立中興大學水土保持學系研究所碩士論文。 15.陳時祖、溫郁菁、彭文飛、蘇容瑩(2002),以位移法分析自然邊坡破壞行為之研究及應用,地震衍生之邊坡破壞行為之研究及應用,九十一學年度期中研究成果研討會論文集,頁1-24。 16.許煜煌(2002),以不安定指數法進行地震引致坡地破壞模式分析,國立台灣大學土木工程學研究所,碩士論文。 17.陳意璇(2002),溪頭地區山崩潛感圖製作研究,國立臺灣大學土木工程學研究所,碩士論文。 18.彭文飛(2001)以位移法分析自然邊坡在地震時之破壞行為的初步探討,國立成功大學資源工程學系,碩士論文。 19.張舒婷(2007),「土壤水分特性曲線與不飽和水力傳導度之研究」,國立中興大學水土保持學系研究所碩士論文。 20.張國欽(2005),「邊坡在降雨入滲狀況下之穩定性分析與評估」,國立中興大學水土保持學系研究所碩士論文。 21.黃臺豐(1999),瑞里地震誘發之山崩,國立中央大學應用地質研究所,碩士論文。 22.溫郁菁(2003),以位移法分析自然邊坡在地震力作用下的曲面形破壞,國立成功大學資源工程學系,碩士論文。 23.楊凌翔(2005),地震引致之山崩條件式機率預測模式-以集集地震為例,國立臺灣大學土木工程學研究所,碩士論文。 24.經濟部水利署水資源局(2001),「水文設計應用手冊」。 25.臺灣營建研究院(2011),「九份地層滑動監測與評析第六期計畫與補充大地工程調查分析 補充大地工程調查分析 計畫成果報告」。 26.廖洪鈞等(2005),「分階式山區道路邊坡崩塌預測模式之建立研究-以阿里山公路為例」,第11屆台灣大地工程研討會。 27.廖軒吾(2000),集集地震誘發之山崩,國立中央大學地球物理研究所,碩士論文。 28.鄭克聲、許恩菁、葉惠中(1999),「具隨機碎形特性之暴雨雨型」,台灣水利,47(3):43-54。 29.鄭雅仁(2009),「台灣部分地區土壤水份特性曲線之預測」,國立臺北科技大學土木與防災研究所碩士論文。 30.鄭傑銘(2003)應用GIS進行豪雨及地震引致山崩之潛感性分析,國立臺灣大學土木工程學研究所,碩士論文。 31.蔡孟棻(2005),「以土壤水分特性曲線評估不飽和土壤邊坡穩定性」,國立台灣科技大學營建工程研究所碩士論文。 32.申潤植(1989),「地すベリ工學-理論と實踐」,山海堂。 33.渡正亮(1976),「すべリやすい地すべリ防止技術」,地すべり技術,8(1)。 34.渡正亮、小橋澄治(1987),「地すべリ.斜面崩壞の予知と對策」,山海堂。 35.網干壽夫(1972),「集中豪雨とっサ土斜面の崩壞」,施工技術,Vol. 5-11。 36.Ambraseys, N. N., Menu, J. M.,(1988). “Earthquake-induced ground displacements”,Earthquake Engineering and Structural Dynamics, Vol. 16, p. 985-1006. 37.Arya, L.M., and J. F. Paris. 1981. “A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data.” Soil Science Society of America Journal, Vol 45. pp: 1023-1030. 38.Aubertin, M. Mbonimpa, B. Bussiere, and R. P. Chapuis. 2001. “A physically-based model to predict the water retention curve from basic geotechnical properties.” Submitted to the Canadian Geotechnical Journal for publication. 39.Campbell, H.W., 1976. “Soil slip, debris flow, and rainstorms in the Santa Monica, Mountains and Vicinity, Southern California” U.S. Geological Survey Professional Paper 851, p.55. 40.Chang C.J,Chen.W.F. and Yao, J.T.P.,(1984). “Seismic displacement in slopes by limit analysis.”Journal of Geotechnical Engineering, Vol.100, No7,July. pp.860–874. 41.Chen, W.F and Liu, X. L.,(1990). “Limit analysis in soil mechanics”, Developments in geotechnical engineering ,Vol.52 , pp.405–429. 42.Chen, W.F.,Giger, M.W.,Fang, H.Y.,(1969).“On the limit analysis of slopes”,Soil and Foundations,,Vol.9,pp.23–32.1969 . 43.Childs, E.C. and Collis-George, N. (1950) “The Permeability of Porous Materials,” Proc. Royal Soc., vol.201A, pp.392-405. 44.Chow, V. T., 1951. “A general formula for hydrologic frequency analysis.” Tran. Am. Geophysical Union, Vo1.32, No 2, pp.231-237. 45.Fredlund, D. G. and Xing, Anqing. 1994 “Equations for the Soil-Water Characteristic Curve,” Canadian Geotechnical Journal, Vol. 31, pp. 521-532. 46.Hynes-Griffin,M.E.and Franklin,A.G.,(1984). “Rationalizing the seismic coefficient method”,Miscellaneous Paper GL-84-13,U.S.Army Corps of Engineers Waterway Experiment Station ,Vicksburg,Mississippi,21 pp. 47.Jibson, R. W., Keefer, D. K.,(1993). “Analysis of the seismic origin of landslides:examples from New Madrid seismic zone”, Geological Society of America Bulletin, Vol. 105, pp.521-536. 48.Keefer, D.K.,(1984)“Landslides caused by earthquakes”, Geol. Soc. Am. Bull. Vol.95,pp.406–421. 49.Kramer, S.L., (1996) .Geotechnical Earthquake Engineering, Prentice-Hall International Series in civil Engineering Mechanics. 50.Ling, H.I., Leshchinsky, D.,Mohri, Y.,(1997) “ Soil slopes under com- bined horizontal and vertical seismic accelerations.” Earthquake Engineering and structural dynamic ,Vol.26, pp.1231-1241. 51.Ling,H.I.,Mohri, Y.,Kawabata, T,(1999). “Seismic analysis of sliding wedge:extended Francais-Culmann’s analysis”, Soil Dynamics and Earthquake Engineering,Vol.18,pp.387–393. 52.Lumb, P., 1975. “Slop failures in Hong Kong,” Quarterly Journal of Engineering Geology, Vol.8, pp. 31-65 53.Mein R. G., and Larson C. L., 1973. “Modeling infiltration during a steady state rain”,Water Resour. Res., 9, 384-394. 54.Newmark,N.M.,(1965). “Effects of Earthquake on Dams and Embankments , ”Geotechnique ,Vol.15, No. 2, pp.139–159. 55.Richards, L.A., 1931. “Capillary Conduction of Liquids Through Porous Mediums.” Physics, Vol. 1. 56.Siddharthan,R.V. and EL-Gamal, M., (1998).“Permanent Rotational Deformation of Dry Cohesionless Slopes Under Seismic E xcitations.” Transport. Res. Rec., Vol.1633, pp.45–50 . 57.Sitar, N., S. A. Anderson, and K. A. Johnson., 1992, “Conditions for initiation of rainfall-induced debris flow”, Stability and performance of slopes and embankments: proceedings of a special conference at U. C. Berkeley, ASCE. 58.Tsaparas, I., Rahardjo, H., Toll, D. G., and Leong, E. C., 2002. “Controlling parameters for rainfall-induced landslides,” Computers and Geotechnics, vol. 29, no. 1, pp. 1-27. 59.Van Genuchten, M. Th., 1980. “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Science Society of America Journal, Vol. 44, pp: 892-898. 60.Varnes, D. J., 1978. “Slope Movements and Types and Processes.” In: Landslides : Analysis and Control, Transportation Research Board Nat. Ac. Sci. Washington Special Report 176, pp. 11-13. 61.Wieczorek, G. F., Wilson, R. C., and Harp, E. L., (1985).Map showing slope stability during earthquakes of San Mateo County, California: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-1257E, scale 1:62500. 62.You,L., Michalowski,R.L.,( 1999). “Displacement charts for slopes subjected to seismic loads.”Computers and Geotechnics Vol.25 , pp.45-55
摘要: 為探討地下排水工法對邊坡穩定性之影響,本研究蒐集九份地滑地監測、鑽探及岩土力學試驗資料,並採用涵蓋W2、W4集水井之A1邊坡剖面,進行地下排水工法施作前、後降雨入滲及穩定數值分析。同時,將分析結果與現場監測資料進行比對,以驗證數值程序及輸入參數之有效性。 另外,為評估地下排水工法之功效,本研究採用瑞芳氣象站之降雨資料,來決定25、50及100年不同重現期距之48小時設計雨型分析,並用以進行地滑地降雨入滲分析。最後,結合降雨滲流分析結果,並採用極限平衡分析法,吾人可同步計算地滑地,在整個降雨歷程之穩定性安全係數。隨之,再接續進行降雨期間邊坡之降雨誘發位移,並分析九份地滑地在不同地震震度之穩定性。 對於九份地滑地A1邊坡剖面,地下排水工法施作前,採用2008年鳳凰颱風降雨資料,來進行降雨誘發變位分析,並利用地層變位及地下水水位變動監測值與模擬值之比對,來率定各類輸入參數之有效性。分析結果顯示:地下水水位變動之監測值與模擬值具有相當之吻合度。另外,地下排水工法施作後,則採用2009年莫拉克(Morakot)颱風降雨資料,進行工法之有效性評估 另外,分析結果顯示,九份地滑地A1剖面3個潛在滑動面,在降雨期間,施作地下排水工法之FS值與未施作者比較,較不受降雨影響且下降極微小。由此可確認地下排水工法具有加速排除入滲雨水及減緩地下水水位上升之功能,並使邊坡維持在相對穩定狀態。另外,由降雨誘發位移分析結果可知:施作地下排水工法後,由於入滲雨水造成地下水水位上升之潛勢受到抑制,同時排水工法周圍土層可維持在未飽和狀態,因此地層之降雨誘發位移量可稍微降低。 在25、50及100年不同重現期距之降雨強度條件下,對已施作地下排水工法之A1邊坡剖面,進行降雨入滲與邊坡穩定分析後可發現:在重現期距逐漸增長及降雨強度逐漸增強之條件下,潛在滑動面之FS值縱使呈現微幅降低,但降低幅度極不明顯,且FS值皆維持在大於1.0 (FS >1.0)之情況。上述FS值不隨降雨延時之增長而下降之情況,乃意謂著:地下排水工法在正常運作之情況下,足以排除長延時、高強度降雨之入滲雨水,並使邊坡之穩定度維持在相當之水準而不致於惡化。 依據1999年921地震中央氣象局之記錄資料,選用3種地震加速度歷時曲線,其編號分別為E5、E6及E7,用以代表地震震度5、6及7級之相當地震力輸入資料,來進行九份地滑地邊坡受震穩定分析。分析中,採用Newmark滑動塊體分析理論,求取A1邊坡剖面第三潛在滑動面之累積位移量Δ,5級時其累積位移量為0、6級時位移量為3.204 cm、7級時則為9.429 cm。這也意味著,當地震震度大於6級的狀態下,地滑地之第三潛在滑動面可能處於不穩定之狀態。
To investigate the effect of subsurface drainage on the slope stability, this study collects the monitoring data, boring logs, soil and rock laboratory experiments and field tests of Chiu-Fen landslide for a comprehensive stability analyses. The A1 profile of Chiu-Fen landslide which covers the subsurface drainage works of W2 and W4 vertical shaft with horizontal drains was selected for a series of rainfall seepage and stability analyses. Comparing the groundwater variation and ground movement of simulation with those of measurement during rainfall with one can verify the validity of numerical procedures and material model parameters. In addition, to evaluate the effectiveness of subsurface drainage works in Chiu-Fen landslide, the rainfall records of Ruei-Fang meteorological station were adopted to determine the 48 hrs design rainfall pattern of return periods 25, 50 and 100 years. The design rainfall patterns were eventually used for a series of rainfall seepage and slope stability analyses to obtain the time-dependent factor of safety of potential sliding surface of the landslide during rainfall. Further, the rainfall induced ground movement and earthquake induced stability of Chiu-Fen landslide were also detected. For the A1 profile of Chiu-Fen landslide before the installation of subsurface drainage system, the rainfall data of Fung-Wong typhoon in 2008 were used for rainfall seepage and rainfall induced ground movement analyses. The groundwater variation and ground movement of simulation were compared with those of measurements to calibrate and verify the validity of various material model parameters. The comparisons show that the numerical results are in good agreement with measurements. On the other hand, the rainfall data of Morakot typhoon in 2009 was used to evaluate the effectiveness of subsurface drainage. For the A1 profile of Chiu-Fen landslides with and without subsurface drainage works, the rainfall seepage analyses during Fung-Wong (2008) and Morakot (2009) Typhoons indicated that: the slope stability analyses of the three potential sliding surfaces within the A1 profile of Chiu-Fen landslides stabilized by subsurface drainage works merely shows a negligible decrease of the factor safety FS during torrential rainfall. However, this is not the case of the A1 profile without subsurface drainage works. Consequently, these demonstrate the subsurface drainage works are capable of accelerating the drainage of groundwater off the soil strata and maintain the slope stability of landslides at certain acceptable level. Based on the result of the rainfall induced ground movement analysis, after subsurface drainage works finished and functioned, the rising trend of groundwater levels are suppressed and soil layers around drainage works constantly maintained in unsaturated condition. As a consequence, the rainfall induced ground movement can be slightly reduced. For the A1 profile of Chiu-Fen landslides stabilized by subsurface drainage works, a series of rainfall seepage and slope stability analyses were conducted under different rainfall intensities of return periods 25, 50 and 100 years. According to the numerical results, the factor safety FS of the three potential sliding surfaces within A1 profile only shows a negligible decrease during rainfall. Moreover, the FS values are constantly keeping greater than one (FS > 1.0) and without decreasing with the elapsed time during rainfall. As a result, this reasonably implies that the subsurface drainage works can drain off the infiltrated rainwater of high intensity and long duration rainfall such as return period of 100 years and preserve the slope stability of landslides from deterioration. Three modes of earthquake acceleration time history curves entitled E5、E6 and E7 were selected from the data bank of 921 Quake of Central Weather Bureau and used as earthquake loading inputs for the dynamic stability analysis of A1 profile of Chiu-Fen landslide. The E5、E6 and E7 are real time acceleration time history curve and can be used to represent the earthquake intensities I values equivalent to levels 5, 6 and 7 in Taiwan. In the analyses, the Newmark sliding block theory was used to calculate the cumulative displacement Δ of 3rd potential sliding surface of landslide and the cumulative displacements are 0, 3.204 and 9.429 cm for earthquake intensities of 5,6 and 7 level respectively. This also implies that the 3rd potential sliding surface of landslide may situate at unstable state when the earthquake intensity higher than 6.
URI: http://hdl.handle.net/11455/33018
其他識別: U0005-2308201317241300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308201317241300
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.