Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/33021
標題: 以分離元素法探討卵礫石層力學性質
Study on the Mechanical Properties of Gravel Formations Based on the Discrete Element Method
作者: 陳宥序
Chen, You-Hsu
關鍵字: 卵礫石層
gravel formations
PFC2D
微觀參數
PFC2D
micro parameters
出版社: 水土保持學系所
引用: 1. 王文祥(1996),「礫石層之沉積特徵及量化描述方法嘗試」,地工技術,第55期,第25-34頁。 2. 江崇榮(1980),「台灣坡地社區工程地質調查與探勘報告:台中分區」,經濟部中央地質調查所。 3. 李明勳(2000),「卵礫石隧道開挖變形行為最佳化數值分析」,碩士論文,國立台灣科技大學營建工程系。 4. 邱家吉、王泰典、黃燦輝(2010),「以個別元素法模擬節理岩體單軸壓縮下之力學行為」,全國岩盤工程研討會,高雄,第271-280頁。 5. 余明山(1986),「礫石含量對夯實林口紅土礫石材料力學性質影響之研究」,碩士論文,台灣工業技術學院。 6. 林朝棨(1957),「台灣地形─臺灣通志稿卷一土地誌地理篇」,南投,臺灣省文獻委員會。 7. 林炳森、楊麗文(1995),「卵礫石層地盤反力模數之研究」,國際卵礫石層地下工程研討會,第89-94頁。 8. 林商裕(2001),「台中都會區卵礫石動態特性之研究」,博士論文,國立中興大學土木工程研究所。 9. 林昀葦(2006),「台灣中部地區於崩積層抗剪強度之簡易現地試驗」,國立中興大學土木工程研究所碩士論文。 10. 林耀隆(2007),「以改良式三軸儀器探討卵礫石土之剪脹行為」,國立中興大學土木工程研究所碩士論文。 11. 林明慧(2010),「分離元素模型於地質材料及邊坡之應用」,碩士論文,國立中興大學水土保持學系。 12. 洪如江、詹勳山、楊彰文、何鏗鏘、魏烈舫、陳振才、鄭在仁、馬灼津、陳煌銘(1978),「複合土工程性質初步研究」,台大工程學刊,第23 期,第1-12頁。 13. 洪如江(1995),「台灣紅土礫石台地之風化與侵蝕」,國際卵礫石地下工程研討會,台北,第11-19頁。 14. 張吉佐、陳逸駿、嚴世傑、蔡宜璋(1996),「台灣地區中北部卵礫石層工程性質及施工探討」,地工技術,第55期,第35-46頁。 15. 張吉佐、侯秉承、李民政、李怡德、張博翔(2003),「台灣地區隧道岩體分類系統暨隧道工程資料庫之建立」,公共工程委員會。 16. 黃崇仁、司徒銳文(1995),「台中大肚山台地卵礫石承載特性調查實例」,國際卵礫石層地下工程研討會,第41-50頁。 17. 褚炳麟、張義隆、吳家誠、簡振源(1994)「現地堆石材料之完整應力應變曲線及抗剪強度包絡線」,94岩盤工程研討會,第89-100頁。 18. 褚炳麟、潘進明、張國雄(1996),「台灣西部卵礫石層現地之大地工程性質」,地工技術,第55 期,第47-58頁。 19. 董家鈞、黃安斌(1996),「礫石土材料之力學試驗現況與展望」,地工技術,第55期,第59-70頁。 20. 楊麗文(2000),「以顆粒材料力學探討卵礫石層強度性質之研究」,國立中興大學土木工程研究所博士論文。 21. 鄭文隆(1986),「室內試驗方法對夯實紅土礫石材料力學性質之研究」,碩士論文,台灣工業技術學院。 22. 鄭承昌、翁孟嘉、李宏輝(2010),「以分離元素法探討砂岩彈塑性變形特性之研究」,全國岩盤工程研討會,高雄,第407-416頁。 23. 鄭敏杰(2011),「以野外調查與分離元素法評估卵礫石層強度性質」,碩士論文,國立中興大學水土保持學系。 24. 鄧屬予(1996),「台灣卵礫石層的地質背景」,地工技術,第55期,第5-24頁。 25. 壽克堅、林炳森(1996),台中都會區卵礫石層地下開挖施工方法與支撐系統之研究-part I台中都會區卵礫石層地下開挖施工方法之研究,國科會專題計劃研究成果報告。 26. 劉亦酉(2002),「PB12設計的投影性質研究」,國立中央大學統計研究所碩士論文。 27. 蔡明欣、陳錦清、王銘德(1995),「台灣西部地區卵礫石層現地抗剪強度研究」,國際卵礫石層地下工程研討會,第21-30頁。 28. Baker, R. (2004). “Non-linear strength envelopes based on triaxial data.”, Journal of Geotechnical and Geoenvironmental Engineering, 130, 498-506. 29. Baker, R. (2005). “Variational slope stability analysis of materials with nonlinear failure criterion.”, The Electronic Journal of Geotechnical Engineering, Technion City. 30. Baker, R. (2006). “A relation between safety factors with respect to strength and height of slopes.”, Computers and Geotechnics, 33, 275-277. 31. Cundall, P. A. and Strack, O. D. L. (1979). “A discrete unmercal model for granular assemblies.”, Geotechnique 1979, 29(1), 47-65. 32. Coli, N., Berry, P. and Boldini, D. (2011). “In situ non-conventional shear tests for the mechanical characterization of a bimrock.”, International Journal of Rock Mechanics and Mining Sciences, 48(1), 95-102. 33. Holtz, W. G. and Ellis, W. (1961). “Triaxial shear characteristics of clayey gravel soils.”, Proc. the 50th Intern. Conf. on Soil Mech. And Found. Eng. vol. 1 , 143. 34. Hoek, E. and Brown, E. T. (1980). “Empirical strength criterion for rock masses.”, ASCE Journal of the Geotechnical Engineering Division, 106(9), 1013-1035. 35. Iannacchione, A. T. and Vallejo, L. E. (2000). “Shear strength evaluation of clay-rock mixtures.”, Geotechnical Special Publication, 101, 209-223. 36. Kuang-Tsung Chang, Yu-Min Kang, Min-Chieh Cheng. (2013). “Mechanical properties of gravel deposits estimated with non-conventional methods.”, (in preparation). 37. Miller, E. A. and Sowers, G. F. (1957). “The strength characteristics of soil-aggregate mixtures.”, Highway Research Board Bulletin, 183, 16–23. 38. Matheson, G. M. (1986). “Relationship between compacted rockfill density and gradation.”, ASCE , Journal of Geotechnical Engineering, 11(12), 1119-1124. 39. Nusier, O. K., Almohd (Ayasrah ), I. M. and Jaradat, R. A. (2008). “Nonlinearity of Shear Strength and Stress-Strength Behavior and induced stress predictions.”, International Conference on Construction and Building Technology, E, 43-52. 40. Potytndy, D. and Cundall, P. (2004). “A bonded-particle model for rock.”, International Journal of Rock Mechanics and Mining Sciences, 41, 1329-1364. 41. Sitharam, T. G. Nimbkar M. S. (2000). “Micromechanical Modelling of Granular Materials:Effect of Particle Size and Gradation”, Geotechnical and Geological Engineering, 18, 91-117. 42. Vallejo, L. E. and Zhou, Y. (1994). “The mechanical properties of simulated soil–rock mixtures.”, Proc. the 13th Intern. Conf. on Soil Mech. and Found. Engrg, New Delhi, India, vol. 1, 365–368. 43. Walker, R. G. (1975). “Generalized fades models for resedimented conglomerates of turbidite association.”, Geological Society of America Bulletin, 86, 737-748. 44. Wang, Jun-Jie. Zhang, Hui-Ping. Tang, Sheng-Chuan. Liang, Yue. (2013). “Effects of Particle Size Distribution on Shear Strength of Accumulation Soil”, Journal of Geotechnical and Geoenvironmental Engineering, 139, 10.1061/(ASCE)GT.1943-5606.0000931. 45. Xu, Wen-Jie . Xu, Qiang. Hu Rui-Lin. (2011). “Study on the shear strength of soil-rock mixture by large scale direct shear test”, International Journal of Rock Mechanics & Mining Sciences, 48,1235-1247. 46. Yoon, J. (2007). “Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation.”, International Journal of Rock Mechanics and Mining Sciences, 44, 871-889.
摘要: 卵礫石層在台灣分佈廣泛,工程建設經常遇到卵礫石層的問題,卵礫石為複合材料,力學參數大多採用室內試驗求得,然而室內試驗的重模樣本必定受擾動影響且尺寸有限,少數有進行大型現地直剪試驗或平鈑載重試驗,但極為耗費時間、金錢與人力。為了能更有效率地探討地質材料在工程上或環境上的問題,越來越多學者以數值模擬取代傳統之實驗方式。本研究探討卵礫石材料所使用之軟體為PFC2D,以分離元素法為基礎,透過模擬雙軸試驗,建立宏觀與微觀參數之間的關係式,宏觀參數有強度A、彈性模數E、柏松比ν,微觀參數有正向勁度kn、切向勁度與正向勁度比ks/kn、摩擦係數f,三個微觀參數分別對A、E、ν 作複迴歸分析。當已知宏觀參數A、E、ν 時,可代入這三項複迴歸式並解聯立,即可求得微觀參數。經驗證後認為誤差在可接受範圍內,以此方式反推卵礫石微觀參數有一定之可信度。接著比較有基質與無基質之模型差異,有基質模型強度、彈性模數較無基質模型來得高,而柏松比較低。之後以PB設計探討微觀參數對宏觀參數之影響,結果顯示強度A值受摩擦係數f影響較顯著;彈性模數E受三者影響程度差異不大,正向勁度kn稍高;柏松比υ受切向勁度與正向勁度比ks/kn影響較顯著。最後探討卵礫石材料中卵礫石大小與含量對宏觀參數之影響,結果與前人試驗相似,當卵礫石大小越大、含量越多,其強度A、彈性模數E、柏松比ν 、內摩擦角φ越高;但與凝聚力成負相關,大小越大或含量越多,凝聚力有降低的現象,但幅度甚小。顯示以此方法模擬卵礫石之力學行為是可行的。
Gravel formations are widely distributed in Taiwan, and cause many problems in construction process. Gravel formations are a complex geology material with mechanical parameters usually obtained by laboratory experiments, in which the remodeled specimens would always be disturbed and the specimen size is limited. Only a few researchers conducted large in situ direct shear test or plate-load test due to time, expense, and hard work. In order to be more effective when discussing the problems of geologic materials on both engineering and environment, more and more researchers adopt numerical analysis instead of traditional experiments. In this study, PFC2D which is based on discrete element method was adopted to simulate biaxial tests, and establish the relationship between macro and micro parameters. Macro parameters are strength (A), elastic modulus (E), and poisson ratio (ν); micro parameters are normal stiffness (kn), ratio of shear to normal stiffness (ks/kn), and friction coefficient (f). Through Multiple Regression Model we could obtain three equations. When the value of A, E, υ are all known, the three equations can be solved and the micro parameters are obtained. The results show that the error of empirical equations is satisfactory. Next we compare the results of the models with and without matrix. The strength and elastic modulus of the model with matrix are higher than those of models without matrix, but poisson ratio was on the opposite. Then PB design is used to study the relative influences between macro and micro parameters. The strength (A) is highly influenced by the friction coefficient (f); the influences of individual micro parameters on elastic modulus (E) are not so different, whereas the influence of kn is a little bit higher; Poisson ratio (ν) is highly influenced by ratio of shear to normal stiffness (ks/kn). At last, we investigate the influence of the maximum size and the contents of gravel on macro parameters, and the results are consistent with the conclusions of former researchers. The bigger size or the more contents of gravel, the higher value of A, E, ν, and φ, but the lower value of c. As a result, the numerical models are feasible to simulate mechanical behavior of gravel formations.
URI: http://hdl.handle.net/11455/33021
其他識別: U0005-2108201312232400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108201312232400
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.