Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/33033
標題: 以數值方法評估地下排水工法對邊坡穩定之有效性
Evaluating the Effectiveness of Underground Drainage in Slope Stability by Numerical Methods
作者: 蔡雅如
Tsai, Ya-Ju
關鍵字: 地滑地
landslides
地下排水工法
集水管
集水井
排水廊道
安全係數
underground drainage works
horizontal drain
drainage well
drainage gallery
factor safety
出版社: 水土保持學系所
引用: 參考文獻 1. 中華顧問工程司(1999),「八十五年度坡地災害整治計畫-「梨山地區地層滑動基本設計與補充調查」委託技術服務成果報告」,水土保持局第二工程所委託計畫。 2. 行政院農委會水土保持局(2005),「水土保持手冊」。 3. 行政院農委會水土保持局(2003),「梨山地滑東南區調查規劃」。 4. 行政院農業委員會水土保持局(2003),「水土保持技術規範」。 5. 李光敦(2005),水文學,五南圖書出版公司。 6. 林光敏(2002),「梨山地區地滑行為與數值模擬之研究」,國立臺灣大學土木工程研究所碩士論文。 7. 范嘉程、馮道偉(2003),「以有限元素法探討暴雨時邊坡之穩定分析」,地工技術,第95期,61-74。 8. 陳世芳、黃清益(1979),「地層滑動及其防止對策之研究(1)」,台鐵資料月刊,186(6):1-9。 9. 張博雯(2000),「地滑地危險地下水位建立方法研究」,國立中興大學土木工程學系碩士論文。 10. 張國欽(2005),「邊坡在降雨入滲狀況下之穩定性分析與評估」,國立中興大學水土保持學系研究所碩士論文。 11. 張舒婷(2007),「土壤水分特性曲線與不飽和水力傳導度之研究」,國立中興大學水土保持學系研究所碩士論文。 12. 富國技術工程公司(2003),「梨山地滑東南區調查規劃」,委託技術服務工作報告書。 13. 經濟部水利署水資源局(2001),「水文設計應用手冊」。 14. 廖洪鈞等(2005),「分階式山區道路邊坡崩塌預測模式之建立研究-以阿里山公路為例」,第11屆台灣大地工程研討會。 15. 鄭克聲、許恩菁、葉惠中(1999),「具隨機碎形特性之暴雨雨型」,台灣水利,47(3):43-54。 16. 鄭順隆(2006),「崩塌地降雨-入滲-滲流機制之數值模擬及穩定性分析」,國立中興大學水土保持學系研究所碩士論文。 17. 鄭雅仁(2009),「台灣部分地區土壤水份特性曲線之預測」,國立臺北科技大學土木與防災研究所碩士論文。 18. 蔡孟棻(2005),「以土壤水分特性曲線評估不飽和土壤邊坡穩定性」,國立台灣科技大學營建工程研究所碩士論文。 19. 蘇柏嘉等(2005),應用數值分析模擬降雨對邊坡穩定之影響,第11屆台灣大地工程研討會,C30。 20. 申潤植(1989),「地すベリ工學-理論と實踐」,山海堂。 21. 渡正亮(1976),「すべリやすい地すべリ防止技術」,地すべり技術,8(1)。 22. 渡正亮、小橋澄治(1987),「地すべリ.斜面崩壞の予知と對策」,山海堂。 23. 網干壽夫(1972),「集中豪雨とっサ土斜面の崩壞」,施工技術,Vol. 5-11。 24. Arya, L.M., and J. F. Paris. 1981. “A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data.” Soil Science Society of America Journal, Vol 45. pp: 1023-1030. 25. Aubertin, M. Mbonimpa, B. Bussiere, and R. P. Chapuis. 2001. “A physically-based model to predict the water retention curve from basic geotechnical properties.” Submitted to the Canadian Geotechnical Journal for publication. 26. Campbell, H.W., 1976. “Soil slip, debris flow, and rainstorms in the Santa Monica, Mountains and Vicinity, Southern California” U.S. Geological Survey Professional Paper 851, p.55. 27. Childs, E.C. and Collis-George, N. (1950) “The Permeability of Porous Materials,” Proc. Royal Soc., vol.201A, pp.392-405. 28. Chow, V. T., 1951. “A general formula for hydrologic frequency analysis.” Tran. Am. Geophysical Union, Vo1.32, No 2, pp.231-237. 29. Fredlund, D. G. and Xing, Anqing. 1994 “Equations for the Soil-Water Characteristic Curve,” Canadian Geotechnical Journal, Vol. 31, pp. 521-532. 30. GEO-SLOPE International Ltd. 2007, User’s Guide of SEEP/W 2007, and SLOPE/W2007. 31. Green, R. E. y Corey, J. C., 1971. “Calculation of Hydraulic Conductivity: A Further Evaluation of Some Predictive Methods.” Soil. Sci. Am. Proc. 35, pp. 3-8. 32. H. Rahardjo, K.J. Hritzuk, E.C. Leong and R.B. Rezaur,2003.” Effectiveness of horizontal drains for slope stability,” Engineering Geology, Vol.69, pp. 295-308. 33. Koukis, G. and Ziourkas, C., 1991.”Slope instability phenomena in Greece:A statistical analysis,” Bulletin of the International Association of Engineering Geology, Vol. 43, pp.47-60. 34. Lumb, P., 1975. “Slop failures in Hong Kong,” Quarterly Journal of Engineering Geology, Vol.8, pp. 31-65. 35. Mein R. G., and Larson C. L., 1973. “Modeling infiltration during a steady state rain”,Water Resour. Res., 9, 384-394. 36. Richards, L.A., 1931. “Capillary Conduction of Liquids Through Porous Mediums.” Physics, Vol. 1. 37. Sitar, N., S. A. Anderson, and K. A. Johnson., 1992, “Conditions for initiation of rainfall-induced debris flow”, Stability and performance of slopes and embankments: proceedings of a special conference at U. C. Berkeley, ASCE. 38. Tsaparas, I., Rahardjo, H., Toll, D. G., and Leong, E. C., 2002. “Controlling parameters for rainfall-induced landslides,” Computers and Geotechnics, vol. 29, no. 1, pp. 1-27. 39. Van Genuchten, M. Th., 1980. “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Science Society of America Journal, Vol. 44, pp: 892-898. 40. Varnes, D. J., 1978. “Slope Movements and Types and Processes.” In: Landslides : Analysis and Control, Transportation Research Board Nat. Ac. Sci. Washington Special Report 176, pp. 11-13. 41. W. H. Green and G. A. Ampt, 1911. “Studies in soil physics. Part I. The flow of air and water through soils,” The Journal of Agricultural Science, vol. 4, pp. 1–24.
摘要: 為探討地下排水工法對邊坡穩定性之影響,本研究蒐集梨山地滑地監測、鑽探及岩土力學試驗資料,並採用涵蓋3種地下排水工法(橫向集水管、集水井、排水廊道)之梨山地滑地Y2剖面,進行地下排水工法施作前、後邊坡降雨入滲及穩定數值分析。同時,將分析結果與現場監測資料進行比對,以驗證數值程序及輸入參數之有效性。 另外,為評估地下排水工法之功效,本研究採用梨山氣象站之降雨資料,來完成25、50及100年不同重現期距之48小時設計雨型分析,並用以進行地滑地降雨滲流二維有限元素分析。最後,配合降雨滲流分析結果,並採用極限平衡分析法,吾人可同步計算地滑地在整個降雨歷程之穩定性安全係數。完成上述地下排水工法施作前、後兩階段之降雨滲流分析驗證後,本研究再設計2組虛擬邊坡,並在特定地形及水文條件下,針對地下排水工法(集水井、排水廊道)進行設計參數研究,以探討各項設計參數對邊坡穩定性之影響。 對於棃山地滑地Y2剖面,採用地下排水工法施作前、後邊坡以及安珀與桃芝颱風之降雨資料,進行降雨入滲分析比對後之結果顯示:地下水水位變動之模擬值與監測值具有相當之吻合度。另外,由邊坡穩定分析結果得知,棃山地滑地Y2剖面3個潛在滑動面,在施作地下排水工法後,降雨期間之穩定性安全係數Fs值,與施作地下排水工法前之Fs值相比較,較不受降雨影響且下降極微小。由此可證明地下排水工法確可發揮加速地下水之排除,並維持邊坡穩定性之水準在可接受之程度。 針對地下排水工法整治邊坡之地形與水文條件,進行參數研究結果顯示:邊坡坡度增加以及初始地下水水位位置較高時,邊坡之Fs值會明顯降低。而降雨期間,不同重現期距之降雨強度對土層之孔隙水壓影響不大,此乃由於所配置之地下排水工法,可完全處理不同重現期距降雨條件下之入滲雨水所致。 地下排水工法設計參數研究結果顯示:集水管打設角度與間距,對於邊坡穩定性之影響較小。另外,在集水井與排水廊道之施作位置較接近坡趾、集水井打設深度較深、集水管打設長度較長、排水廊道施作位置距初始地下水水位較近,以及排水廊道具有較大之集水流量等條件下,地下排水工法之排水功效較佳且對邊坡穩定性有較大之提升效果。
This study collected the boring data, testing data of soil and rock mechanics and monitoring data of Li-Shan landslides to explore the influence of underground drainage works on the slope stability. The Y2 profile of Li-Shan landslides was selected to investigate the influence of underground drainage works (namely, horizontal drain, drainage well and drainage gallery) on the slope stability. Firstly, a series of two-dimensional (2-D) rainfall seepage analyses and slope stability analyses were performed on the Y2 profile with and without underground drainage works. Subsequently, the numerical results were compared with the field monitoring data to verify the validity of numerical procedures and input parameters. Moreover, to evaluate the efficiency of the underground drainage works, a series of 2-D finite element rainfall seepage analyses were carried out using 48 hours rainfall intensities of return period (recurrence intervals) 25, 50 and 100 years. Eventually, in cooperating with the numerical results of rainfall seepage analyses, one can calculate the factor safety of the potential sliding surfaces simultaneously throughout the rainfall duration using limit equilibrium analysis. After verifying the validity of numerical procedures of rainfall seepage analyses on Y2 profile with and without underground drainage works, two groups of fictitious slope were prepared for a series of parametric studies conducted under specific topographic and hydrological conditions to examine the influences of various design parameters of underground drainage works on the slope stability. For the Y2 profile of Li-Shan landslides with and without underground drainage works, the rainfall seepage analyses under Amber (1997) and Toraji (2001) Typhoons indicated that: the variations of groundwater level from numerical simulation are in excellent agreement with those from instrumentation. Meanwhile, the slope stability analyses of the three potential sliding surfaces within the Y2 profile of Li-Shan landslides stabilized by underground drainage works (horizontal drains, drainage well and drainage gallery) merely shows a negligible decrease of the factor safety FS during torrential rainfall. However, this is not the case of the Y2 profile without underground drainage works. Consequently, these demonstrate the underground drainage works are capable of accelerating the drainage of groundwater off the soil strata and maintain the slope stability of landslides at certain acceptable level. For the fictitious slope stabilized by underground drainage works, a series of parametric studies were performed to inspect the influence of topographic and hydrological conditions on the slope stability. The numerical results indicate the factor safety Fs shows a significant decrease in the conditions of steeper slope inclination and higher initial groundwater level. On the other hand, the pore water pressure of soil stratum appears not sensitive to the rainfall intensities determined from different return periods 25, 50 and 100 years. As a consequence, one may deduce that the installed underground drainage works in the fictitious slope can effectively drain off the infiltrated rainwater from the soil stratum. According to the parametric studies on the design parameters of underground drainage works, the inclination angle and spacing of horizontal drain only display minor influence on the slope stability. In conclusions, the underground drainage works (horizontal drain, drainage well and drainage gallery) may possess a better drain function and higher capability of improving the slope stability if they are constructed by the following principles: (1) drainage well and drainage gallery are installed closer to the slope toe, (2) drainage well is drilled deeper into colluviums, (3) horizontal drain is drilled longer within colluviums, (4) drainage gallery is configured closer to the initial groundwater level, (5) drainage gallery is equipped with larger drainage capacity.
URI: http://hdl.handle.net/11455/33033
其他識別: U0005-1008201217010500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1008201217010500
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.