Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/33105
標題: 因應氣候變遷上游集水區水土資源保育策略之研究
Strategies of soil and water conservation for the upstream watershed in response to climate change
作者: 鄭旭涵
Jeng, Jero-Hertz
關鍵字: 環境指標
environmental index
氣候變遷
保育策略
climate change
conservation strategies
出版社: 水土保持學系所
引用: 6參考文獻 1. 中央研究院(2011),「因應氣候變遷之國土空間規劃與管理政策建議書」,中央研究院報告。 2. 中央氣象局(2010),http://www.cwb.gov.tw。 3. 水保局(2007),「地表逕流之截蓄保水設施對於生態農村輔助效益之研究」。 4. 王慈憶、陳朝圳(2009),「全球暖化對台灣冷杉屬植群之時空變化研究」,98年度中華林學會研討會,台中。 5. 王偉、邱清安、蔡尚真、許俊凱、曾喜育、呂金誠(2010),「雪山主峰沿線植物社會調查研究」,林業研究季刊32(3):15-34。 6. 玉山國家公園管理處(2010),玉山國家公園網站,http://www.ysnp.gov.tw/plantlist_messages.aspx?id=9。 7. 水利署(2011),「氣候變遷對水旱災災害防救衝擊評估研究計畫(2/2)」。 8. 江宜錦(2007),「天然災害統計指標建構與分析 -以台灣各縣市為例」,銘傳大學媒體空間設計研究所,碩士論文。 9. 何春蓀(1986),「臺灣地質概論」,經濟部中央地質調查所。 10. 呂金誠、歐辰雄、王秋美、吳聲海、邵廣昭、林良恭、林博雄、林昭遠、孫元勳、曾彥學、曾喜育、葉文斌、楊嘉棟、蔡尚惠、顏江河、魏聰輝(2011),「雪山地區高山生態系長期監測與研究」,雪霸國家公園管理處研究報告。 11. 呂福原、歐辰雄、廖秋成、陳慶芳(1984),「林火對森林土壤及植群演替影響之研究(二)」,嘉義農專學報,10:47-72。 12. 沙學均(2009),「MODIS衛星影像應用於台灣地區森林健康監測」,屏東科技大學森林系碩士論文,96頁。 13. 李惠平(1996),「河系點源及非點源污染負荷推估之研究」,國立成功大學環境工程研究所碩士論文。 14. 李美慧(2006),「生態監測概論」,明文書局編印,P.278。 15. 李光敦(2002),「水文學」,五南圖書出版股份有限公司出版。 16. 李玲玲(2011),「生物多樣性保育國際化趨勢與國內任務」,國道永續經營環境復育研討會。 17. 吳榮平、吳東孟、莊弼昌(2011),「偏遠山區居民臨災的危機處理與調適行為之研究」,危機管理學刊,9(1):2-15。 18. 周昌弘(2006),「高山芒生長特性之研究」,飼料營養雜誌,p.98。 19. 林育慈(2009),「氣候變遷調適方案之選擇與排序方法初探」,內政部建築研究所。 20. 林昭遠(1991),「野火影響土壤性質之研究」,國立中興大學植物學研究所博士論文。 21. 林昭遠、林文賜(1999),「集水區坡長因子自動萃取之研究」,中華水土保持學報,30(4):299-311。 22. 林昭遠(1998),「濱水區植生緩衝帶配置之研究」,中華水土保持學報,29(3):261-272。 23. 林文賜(2002),「集水區空間資訊萃取及坡面泥砂產量推估之研究」,國立中興大學水土保持學系博士論文。 24. 林昭遠、張嘉琪、鄭旭涵(2010),「集水區窪蓄區位自動萃取之研究」,水土保持學報,42(2):137-150。 25. 林朝欽、黃清吟(2006),「火燒干擾對森林生態系之影響與對策」,林業研究專訊,13(5):15-17。 26. 林政侑(2012),「應用環境指標劃定集水區地覆類別及熱點區位監測之研究」,國立中興大學水土保持學系碩士論文。 27. 邱郁瑄(2012),「環境指標萃取及應用之研究-以雪霸國家公園雪東線步道及圈谷為例」,國立中興大學水土保持學系碩士論文。 28. 周乃昉、吳嘉文(2010),「通用性廣域水資源運用模擬模式」,農業工程學報,56(1):pp.1-21。 29. 莊佳慧(1998),「指標模式應用於植生緩衝帶寬度之研究」,國立中興大學水土保持學系碩士論文。 30. 郝志新、鄭景雲、葛全勝、丁玲玲(2011),「中國南方過去400年的極端冷冬變化」,地理學報,66(11):1479-1485。 31. 郝曉華、王建、李弘毅(2008),「MODIS雪蓋製圖中NDSI閥值之檢驗-以祁連山中部山區為例」,冰川凍土,30(1):132-138。 32. 雪霸國家公園管理處(2010),「雪山高山生態系高山植物物候調查」,雪霸國家公園管理處自行研究報告。 33. 陳永明、陳亮全、林李耀(2011),「氣候變遷之災害衝擊與防災調適策略」,國家災害防救科技中心、國立臺灣大學建築與城鄉研究所。 34. 陳彥傑(2004),「台灣山脈的構造地形指標特性-以面積高度積分、地形碎形參數與河流坡降指標為依據」,國立成功大學地球科學研究所博士論文。 35. 許晃雄、周佳、吳宜昭、盧孟明、陳正達、陳永明(2012),「台灣氣候變遷的關鍵議題」,台灣醫學,16(5):459-470。 36. 陳朝圳(1999),「南仁山森林生態系植生綠度之季節性變化」,中華林學季刊,32(1):53-66。 37. 陳文福、鄭新興(1996),「迴歸模式應用於SPOT衛星影像地形效應之修正」,水土保持學報,28(4):101-115。 38. 陳昱豪(2006),集水區崩塌地植生復育率與泥砂產量推估之研究,國立中興大學水土保持學系碩士論文。 39. 陳憲宗、曾宏偉、林錦源、楊道昌及游保杉(2011),「氣候變遷情境下曾文水庫集水區水文乾旱特性推估」,農業工程學報,57(3):1-17。 40. 郭礎嘉(2009),「七家灣溪濱岸植群動態」,國立中興大學森林學系碩士論文。 41. 張大偉、王明光(1998),「農田土壤中有機與無機污染物的動態」,八十七年度農業工程研討會論文集,p.433-437。 42. 張仲德、王素芬、林登秋(2011),「氣候變遷與不同尺度植被物候研究之回顧」,地理學報,63:1-33。 43. 張金屯、程佳佳、米湘成、馬克平(2011),「亞熱帶常綠闊葉林群落物種多度分佈格局對取樣生物多樣性」,19(2):168-177。 44. 張佑慈(2010),「氣候變遷下鄉鎮層級災害風隩之探討」,銘傳大學建築與都市防災研究所,碩士論文。 45. 黃國楨、王韻皓、焦國模(1996),「植生指標於SPOT衛星影像之研究」,台灣林業,22(1):45-52。 46. 黃俊德(1979),「台灣降雨沖蝕指數的研究」,中華水土保持學報,10(1):127-144。 47. 黃莉芬(1990),「應用生態能量分析於土地分類之研究-以台北都會區為例」,國立中興大學都市計劃研究所碩士論文。 48. 黃萬侯(2007),「國家公園內遊憩步道之旅遊衝擊評估-以墾丁國家公園為例」,國立屏東科技大學森林系碩士論文。 49. 黃漢淨(2008),「淺談森林之崩塌地」,台灣林業34(6):54-64。 50. 曾喜育、蔡尚真(2009),「雪山地區高山生態系整合調查-期末報告」,雪霸國家公園管理處,pp.7-6。 51. 童慶斌、楊奕岑(2006),「氣候變遷對櫻花鉤吻鮭適當棲地之衝擊」,農業工程學報,52(1):1-12。 52. 楊秋霖(2001),「梨山與雪山東峰森林大火過後-談森林生態系之復建與救火系統之建立」,中華民國登山健行會專文輯。 53. 楊正雄(1997),「水溫對櫻花鉤吻鮭族群之影響」,國立清華大學生命科學研究所碩士。 54. 榮泰生(2006),「SPSS與研究方法」,五南圖書出版股份有限公司。 55. 蔡志偉(2009),「集水區土地變遷對水域棲地環境影響評估之研究」,國立中興大學水土保持學研究所博士論文。 56. 萬鑫森、黃俊義(1981),「台灣西北部土壤沖蝕及流失量之估算」,中華水土保持學報,12(1):57-67。 57. 萬鑫森、黃俊義(1989),「台灣坡地土壤沖蝕」,中華水土保持學報,20(2):17-45。 58. 廖培明(2002),「水庫規劃供水之可靠度評估」,逢甲大學土木及水利工程研究所碩士論文。 59. 廖敏君、曾喜育、歐辰雄、呂金誠(2005),「玉山箭竹開花之探討」,台灣林業期刊,31(5):54-60。 60. 賴昆芳(2008),森林植物生態學,http://www.laikf.idv.tw/book.htm。 61. 賴炳樹、白仁德(2012),「因應氣候變遷之洪災調適策略規劃」,國立政治大學地政學系,災害防救科技與管理學刊,1(1):81-100。 62. 盧孟明等(2011),「台灣氣候變遷科學報告第四次評估報告」,氣候變遷專門委員會(Intergovernmental Panel on Climate Change, IPCC)。 63. 劉祖乾(1998),「曾文溪河口的海岸變遷,環境科學技術教育專刊」,14:32-47。 64. 劉吉川(2005),「北大武山國家步道踐踏效應監測與經營議題之探討」,2005國家步道研討會論文集,臺北:行政院農業委員會林務局,pp.129-144。 65. 鍾明宏(2011),「氣候變遷對森林劣化之影響」,國立屏東科技大學森林系碩士班專討論報告。 66. 顏瑋利(2006),「以MODIS衛星光譜資料推估不同乾旱時期植群冠層之水分含量」,屏東科技大學森林學系研究所碩士論文。 67. 謝一鳴、許月、康蒙、閻恩榮(2013),「基於植物多度的群落物種組成與環境關聯性分析」,生物多樣性,21(1):80-89。 68. 謝龍生、柳文成及童慶斌(2004),「氣候變遷對大漢溪及新店溪流域防洪系統潛在衝擊影響之研究」,農業工程學報50(3):1-16。 69. 譚仲哲、童慶斌(2008),「氣候變遷對台北地下水補注之衝擊」,農業工程學報,54(1):1-15。 70. Akan, A. O. and E. N. Antoun, (1994), “Runoff detention for flood volume of erosion control,” Journal of Irrigation and Drainage Engineering, 120(1) : 168-178. 71. Bagnold, R. A., (1966), “An approach to the sediment transport problem from general physics,” U.S. Geological Survey Professional Paper, 1 : 422. 72. Barton, J., D. Hall, G. Riggs, (2001), “Thermal and geometric thresholds in the mapping of snow with MODIS,” Unpublished document. 73. Burgan, R. E. and R. A. Hartford, (1993), “Monitoring vegetation greenness with satellite data,” USDA Forest Service Intermountain Research Station General Technical Report INT-297. 74. Burton, I., R. W. Kates, G. F. White, (1993), “The Environment as Hazard, ” N. Y. Guilford. 75. Ceccato, P., N. Gobron, S. Flasse, B. Pinty, S. Tarantola, (2002a), “Designing a spectral index to estimate vegetation water content from remote sensing data : part 1 : theoretical approach,” Remote Sensing of Environment, 82(2-3) : 188-197. 76. Ceccato, P., S. Flasse, J. M. Gregoire (2002b), “Designing a spectral index to estimate vegetation water content from remote sensing data : part 2 : validation and applications,” Remote Sensing of Environment 82(2-3) : 198-207. 77. Christensen N. L. and C. H. Muller, (1975), “Effects of Fire on Factors Controlling Plant Growth in Adenostoma Chaparral,” Ecological Monographs, 45 : 29-55. 78. Chou, T. Y., W. T. Lin, C. Y. Lin, W. C. Chou, P. H. Huang, (2004), “Application of the PROMETHEE technique to determine depression outlet location and flow direction in DEM,” Journal of Hydrology, 287 : 49-61. 79. Dale, V. H. and S. C. Beyeler,(2001), “Challenges in the development and use of ecological indicators,” Ecological Indicator3(1): 3-10. 80. Davranche, A., G. Lefebvre, B. Poulin, (2010), “Wetland monitoring using classification trees and SPOT-5 seasonal time series,” Remote Sensing of Environment, 114 : 552-562. 81. Doyle, F.J., (1978), “Digital Terrain Models: An Overview,” Photogrammetric Engineering and Remote Sensing, 44(12) : 1481-1485. 82. Dozier, J., (1989), “Spectral signatures of alpine snow cover from the Landsat Thematic Mapper,” Remote Sensing of Environment, 28 : 9-22. 83. Foster, G. R., L. J. Lane, J. D. Nowlin, J. M. Laflen, R. A. Young, (1981), “Estimating erosion and sediment yield on field-sized areas,” Trans. ASAE, 24 : 1253-1262. 84. Foster, J. L., A. T. C. Chang,(1993), “Snow cover Atlas of Satellite Observations Related to Global Change,” Cambridge: Cambridge University Press, 361-370. 85. Frederick, K.D., and P.H. Gleick, (1999), “Water and Global Climate Change :Potential Impacts on U.S. Water Resources.” 86. Frere, M. H., J. D. Ross, L. J. Lane, (1980), “The nutrient submodel. In: Knisel W.G. (ed.).1980. CREAMS : A field-scale model for chemicals, runoff, and erosion from agricultural management systems,” U.S. Department of Agriculture, Conservation Research Report, 26 : 25-86. 87. Furley, P., C. Hughes and D. Thomas,(1996), “Threshold, Carrying Capacity and Sustainable Tourism: Monitoring Environmental Change in the Coastal Zone of Belize,” Edinburgh: Department of Geography, University of Edinburgh. 88. Gao, B.C., (1996), “NDWI- a normalized difference water index for remote sensing of vegetation liquid water from space,” Remote Sensing of Environment, 58(3) : 257-266. 89. Grossmann M. and O. Dietrich, (2012) “Integrated Economic- Hydrologic Assessment of Water Management Options for Regulated Wetlands Under Conditions of Climate Change: A Case Study from the Spreewald (Germany), ” Water Resour Manage 26:2081–2108. 90. Helling, C. S. and J. Dragun, (1980), “Soil leaching tests for toxic organic chemicals,” In Proc. Symp. on Test Protocols for Environmental Fate and Movement of Toxicants, 43-88. 91. Intergovernmental Panel on Climate Change (2000), “Special Report on Land Use Land-Use Change and Forestry,” Cambridge University Press, Cambridge, UK. 92. IPCC Working Group II(2001), “Technical Summary : Climate Change 2001 : Impacts, Adaptation, and Vulnerability.” Edited by Manning (New Zealand), M. and Nobre, C. (Brazil), Cambridge University Press, UK. 93. Jenson, S.K. and J.O. Domingue, (1988), “Extracting Topographic Structure from Digital Elevation Data for Geographical Information System Analysis,” Photogrammetric Engineering and Remote Sensing, 54(11) : 1593- 1600. 94. Jones, H. G., J. W. Pomeroy, D. A. Walker, (2001), “Snow Ecology-An Interdisciplinary Examination of Snow-Covered Ecosystems,” Cambridge University Press, 1-264. 95. Kates, R. W., (1971), “Natural Hazard inHuman Ecological Perspectives: Hypothesesand Models,” Economic Geography, 47. 96. Kato E., C. Ringler, M. Yesuf, E. Bryan, (2011), “Soil and water conservation technologies: a buffer against production risk in the face of climate change? Insights from the Nile basin in Ethiopia,” Agricultural Economics, 42 : 593–604. 97. Klein, A., D. Hall, G. Riggs, (1997), “Improving the MODIS global snowmappingalgorithm,” IEEE International Geoscience and Remote SensingSymposium Proceedings (IGARSS’97), 619-621. 98. KLIK A., and J. Eitzinger, (2010), “Impact of climate change on soil erosion and the efficiency of soil conservation practices in Austria. ” Agricultural Science, 148(5) : 529–541. 99. Lillesand, T. M., R. W. Kiefer, J. W. Chipman, (2008). “Remote Sensing and Image Interpretation,” John Wiley and Sons, Inc., 111 River Street, Hoboken: NJ , ISBN-13 978-0470052457 100. Lin, W. T., W. C. Chou, C. Y. Lin, P. H. Huang, J. S. Tsai, (2008), “WinBasin: Using Improved Algorithms and the GIS Technique for Automated Watershed Modeling Analysis from Digital Elevation Models,” International Journal of Geographical Information, 22(1) : 47-69. 101. Maddox, D., K. Poiani and R. Unnasch,(1999), “Evaluating management success: using ecological models to ask the right monitoring question,” In Sexton, W. T., Malk, A. J., Szaro, R. C., and Johnson, N. C. (eds) Ecological Stewardship, Volume 3, Elsevier Science, New York, P.563-584. 102. Manning, R., (1891), “On the flow of water in open channels and pipes,” Transactions, Institution of Civ. Eng. Ireland, 20 : 161-207. 103. Maraqa, M. A., X. Zhao, R. B. Wallace, T. C. Voice, (1998), “Retardation coefficients of nonionic organic compounds determined by batch and column techniques,” Soil Sci. Soc. Am. J., 62 : 142–152. 104. Mark, D.M., (1984), “Automated Detection of Drainage Networks from Digital Elevation Models,” Cartographica (Auto-Carto Six Selected Papers), 21(2-3) : 168-178. 105. Mark, D.M., (1988), “Network models in geomorphology”, in Modelling Geomorphological Systems, ed. M.G. Anderson, John Wiley. 106. Martz, L.W. and J. Garbrecht, (1998), “The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models,” Hydrological Processes, 12 : 843-855. 107. Miller, C.L., (1957), “The Spatial Model Concept of Photogrammetry,” Photogrammetric Engineering, 13(1) : 31-40. 108. Miller, C.L. and R.A. Laflamme, (1958), “The Digital Terrain Model Theory and Application,” Photogrammetric Engineering, 14(3) : 433-442. 109. Mitchell, J.K. and Jr. B. A. Jones, (1976), “Micro-relief surface depression storage: analysis of models to describe the depth-storage function,” Journal of the American Water Resources Association, 12(6) : 1205-1222. 110. Mitchell, J.K. and Jr. B. A. Jones, (1978), “Micro-relief surface depression storage: changes during rainfall events and their application to rainfall-runoff models,” Journal of the American Water Resources Association, 14(4) : 777 - 802. 111. Monte R. O., M. A. Nearing, R. C. Vining, J. Southworth, R. A. Pfeifer, (2005), “Climate change impacts on soil erosion in Midwest United States with changes in crop management, ” Catena, 61 (2005):165–184. 112. Paulina L., P. Sirguey, Y. Arnaud, B. Pouyaud, P. Chevallier, (2008), “Snow cover monitoring in the Northern Patagonia Icefield using MODIS satellite images(2000–2006),” Global and Planetary Change, 61 : 103–116. 113. Perry, C. R., Jr. L. F. Lautenschlager, (1984), “Functional equivalence of spectral vegetation indices,” Remote Sens of Environ, 14 : 169 182. 114. Puvis, A., J. P. Hoehn, V. L. Sorenson, F. J. Pierce, (1989), “Farmers’ responses to a filter strip program: Results of a contingent valuation survey,” J. Soil Water Conservation, 44 : 501–504. 115. Riggs, G. A., D. K. Hall, V. V. Salomonson, (2006), “MODIS Snow Products UserGuide Collection,” USA. 116. Rao, P. S. C., A. G. Hornsby, R. E. Jessup, (1985), “Indices for ranking the potential for pesticide contamination of groundwater,” Soil and Crop Science Society of Florida Proceedings, 44 : 1-8. 117. Sala, O. E., F. S. Chapin Ⅲ, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. H. Sannwald, L. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker, D. H. Wall, (2000), “Biodiversity scenarios for the year 2100,” Science, 287 : 1770-1774. 118. Salomonson, V. V. and I. Appel, (2004), “Estimating fractional snow cover from MODIS using the normalized difference snow index,” Remote Sensing of Environment, 89: 351-360. 119. Schwab, A. K., K. Eschelbach, D. J. Brower, (2006), “Hazard mitigation and preparedness: Buildingresilient communities,” Hoboken, NJ: John Wiley & Sons. 120. Sinokrot, B. A. and H. G. Stefan, (1995), “Stream temperature dynamic : measurement and and modeling,” Water Resources Research, 29(7) : 2299-2312. 121. Smith, R. E., J. R. Williams, (1980), “Simulation of the surface hydrology,” U.S. Dep. Agric. Conserv. Res., 26(11) : 15. 122. Stefan, H. G. and B. A. Sinokrot, (1993), “Projected global climate change impacts on water temperatures in five river central U.S. streams,” Climatic Change, 24 : 353-381. 123. Steffen, W. L., B. H. Walker, J. S. Ingram and G. W. Koch, (1992), “Global Change and Terrestrial Ecosystems: The Operational Plan. IGBP Report No.21,” International Geosphere-Biosphere Programme, Stockholm, P.93. 124. Tebaldi, C., L.O.Mearns, D. Nychka, R.L.Smith, (2004), “Regional probabilities of precipitation change: A Bayesian analysis of multimodel simulations,” Geophys. Res. Lett.31, L24213, doi:10.1029/2004GL021276. 125. Tolkien J. R. R., (1954), “The Lord of the Rings,” Allen & Unwin, Britain. 126. USDA-SCS., (1972), “United States Department of Agriculture - Soil Conservation Service,” National Engineering Handbook, Sec. 4. 127. Weibel, R. and M. Heller., (1991), “Digital Terrain Modeling,” in Maguire, D.J., M.F. Goodchild and D.W. Rhind (Eds) Geographical Information Systems, 1 Harlow: Longmans, 269-297. 128. Willows R. and R. Connell, (2003), “Climate adaptation: Risk, uncertainty and decision-making,” UKCIP Technical Report. 129. Wischmeier, W. H. and D. D. Smith, (1958), “Rainfall energy and its relationship to soil loss,” Trans. AGU, 39 : 118-125. 130. Wischmeier, W. H. and D. D. Smith, (1965), “Predicting Rainfall-erosion Losses from Cropland East of the Rocky Mountains,” Agricultural Research Service, United States Department of Agriculture, pp.282. 131. Wischmeier, W. H. and D. D. Smith, (1978), “Predicting rainfall erosion losses,” Agricultural Research Service, United States Department of Agriculture, pp.537. 132. Wu C., Z. Niu, Q Tang, W. Huang, (2008), “Estimating chlorophyll content from hyper spectral vegetation indices: Modeling and validation,” Agricultural and Forest Meteorology 148: 1230-1241. 133. Xiao X. G., S. Boles, J. Liu, D. Zhuang, M. L. Liu, (2002), “Characterization of forest types in northeastern china, using multi-temporal SPOT-4 VEGETATION sensor data,” Remote Sensing of Environment, 82 : 335-348. 134. Young, R. A., C. A. Onstad, D. D. Bosch, W. P. Anderson, (1989), “AGNPS: A nonpoint-source pollution model for evaluating agricultural watersheds,” Journal of Soil and Water Conservation, 44(2) : 168-173. 135. Zhang, Q., X. Xiao, B. Braswell, E. Linder, S. Ollinger, M. L. Smith, J. P. Jenkins, F. Baret, A. D. Richardson, B. III Moore, M. Rakesh, (2006), “Characterizations of seasonal variation of forest canopy in a temperate deciduous broadleaf forest using daily MODIS data,” Remote Sensing of Environment, 105 : 189-203.
摘要: 生態系演替的時間尺度相較於人類活動的節奏,常顯得緩慢而無感,環境中微不足道但卻廣域的變化,累積的效應往往產生摧枯拉朽的破壞。對於集水區之土壤形成、自然沖蝕等土砂運移現象,傳統上係以通用土壤流失公式USLE做為推估論述之基礎,包括其後的修正RUSLE;在長時間的概念上,更發展出結合地理資訊系統GIS之年農業非點源汙染模式annAGNPS,做為模擬逕流量之有效工具。惟面對氣候變遷加速之環境趨勢,極端氣象益增對於集水區水土資源之影響,過去廣泛運用於正常狀況下的分析技術,已不敷經營者對於全面掌握變遷、快速研判衝擊所需,亟需從觀念上建立更廣闊的審視高度。 集水區環境指標,猶如健康檢查的各項功能指數之於人類身體,可從巨觀、微觀的尺度,利用不同的技術,觀察、檢測這些環境徵值。本研究主要目的,在整合現今已成熟之科技,適當選取對衝擊具敏感性、對脆弱具表現性、對極限具關鍵性之環境指標,並具體驗證其在環境保育上之應用,建立集水區水土資源在氣候變遷趨勢下,可操作之技術理論與策略應用架構,尤其關心位處關鍵區位之上游集水區。 研究方法首從臺灣高山地區的環境因子,探討在全球氣候變遷趨勢下,臺灣高山環境變動主要種類與方向,以及萃取這些環境變動所採用的技術;再就高山生態系受環境變動導致之影響,說明上游集水區的變化如何透過體檢的概念,利用環境指標掌握環境變動與生態系影響之熱點,經分類篩選待檢證條件後,選取雪山地區為範圍,採武陵農場億年僑以上七家灣溪集水區為檢驗分析單元,進行各項區域尺度指標分析及現地勘查。 研究結果顯示,高山生態系之環境條件可歸結反映在植生指標NDVI及水體指標NDWI之變異上,經線性反向配置常態化差異植生指標分析集水區綠劣率,與藉由土地利用圖資分類植物群落分析之集水區碳存量間呈線性負相關,驗證綠劣率可做為集水區碳存量之環境指標,而碳存量則反映集水區土地利用之變遷。不同季節NDVI與NDWI之平均數及標準差變異情形,反映植生綠覆與含水量之變遷現象,可有效快速評估在氣候變遷條件下高山生態系之空間、時間特性,找出易受環境影響之區位,亦即驗證植生推移及水源涵養能力等環境指標,可分析上游集水區熱點區位。透過陸源物質遞移指標,則可檢驗集水區土壤沖蝕狀況與人類活動間之衝擊管理關係。本研究同時驗證臺灣高山地區上游集水區特有的圈谷積雪現象,與植群推移、含水量及地形指標,可瞭解積雪區位水資源在時間上之移動與如何緩解調節熱點區位受氣候變遷之影響。 從水土資源保育策略的角度,本研究建議因應全球氣候變遷,上游集水區生態面應優先觀察植生推移帶之消長推移現象;環境面應持續監測水資源變化及移動狀況;保育策略面應善用集水區既有地形條件,預先營造水資源漥蓄區位,包括積雪區位之漥蓄空間,延長高山溪流枯水期之基流補注,必要時應配合於草生地犁除局部根系,增加土壤水份入滲,破除火燒後之斥水現象,降低野火潛勢;經營管理面可透過法制方法,強制建立濱溪林帶,營造陸源物質遞移之緩衝防線,必要時更應劃定禁止耕墾區位,還地於林,增加森林綠覆面積;最終本研究指出,集水區植生及水體指標除具有區域環境徵值之代表性外,所採行之研究方法,具有可操作性、可評估性及可檢驗性;同時對集水區管理單位在水土資源保育策略上,運用時特具有簡易性、經濟性與理論支持性,所建議策略,可做為氣候變遷下高山上游集水區之保育措施參考,事先避免不可逆之生態環境劣化。
Comparing to the scale of time, the succession of ecosystem seems to be long, slow and unobvious for human beings. The changes of environment that are tiny but wide spread could lead to an enormous catastrophe. In classic approaches, soil forming and delivery process of watershed can be estimated and simulated by USLE and its modified version, RUSLE. In long-term concepts, the annAGNPS combined with GIS is also used as an efficient tool to simulate runoff. Unfortunately, the influences of climate changes and extreme weather events to soil and water resources in watershed are far beyond the capability of analysis technique applied for normal situations nowadays. To overcome rapid changes and analyze impacts, a wider foresight for environment changing tendency is needed. Environmental index can be applied, like a physical checkup and can also be observed and examined from the whole system to the detail inside via many kinds of technique. The purpose of this research is to integrate well-developed technologies and extract the key environmental index with impact sensitivity. Applications of the key index on environment protection is then verified to establish operable, technical and theoretical strategy frames of hotspot in upstream watershed. The first phase of this study is discussing and finding the patterns of mountain areas changes under the condition of global climate change via environmental index. Second, with the information of environment and ecosystem changes, the method of extracting hot spots in upstream watersheds of these changes via environmental index will be discussed. The study selects the Yi-Nian bridge watershed in Xueshan to be study area. Integrating satellite images and field investigations finds out the change of vegetation coverage and the distribution of water resource to extract the hot spots from watershed. The relation between erosion and management of the impact from human activities could be examined by Terrestrial Substance Index. The result reveals that the environment condition of ecosystem at alpine area could be indicated by the variation of NDVI and NDWI. Green deterioration rate, which can be extract from NDVI after linear transformation process, has a linear negative relationship between carbon stock which can be extract from Land use data and vegetation group. This relationship shows that green deterioration can be an environmental index of watershed carbon stock, and carbon stock can indicate the variation of watershed land use. Changes of averages and variations of NDVI and NDWI in different seasons can reveal the changes of vegetation cover and moisture content. Thus the spatial and time characteristics of ecosystem in alpine area under climate change can be evaluated efficiently to find environment influence sensitive area. On the other hand, the relationship between soil erosion in watershed and human activities can be examined by land material delivery index. Moreover, it also discovers that the specific snow accumulation of the cirque in mountain area could relief influences to sensitive regions of environment from climate change. This research recommends adapting global climate change for the strategy of soil and water conservation through monitoring ecotone in upstream area as priority, monitoring the variation and move of water resources, managing the water resources accumulation area with watershed topography conditions such as snow and water accumulation spot and extending the base flow afflux during arid season to eliminate water repellent phenomenon after fire burn, part of grass roots need to be removed to increase water infiltration if necessary. For management, the buffer of river should be established base on laws to release impacts come from land area material, moreover, farming-forbidden zone might be established to increase the area of forest. The result shows that besides the significant to watershed environment, vegetation and water index are operable, assessable and examinable. For soil and water resource conservation strategy made by watershed management authorities, these indexes are also universal, easy to apply and can prevent irreversible environment decaying inder the condition of climate change. The final conclusion of this study shows that the research method is operable, evaluable and testable besides vegetation and water index with characteristics significant of watersheds. Simultaneously, the conclusion can be applied easily, economically and theoretically by watershed management authorities as soil and water conservation strategy. Moreover, all of the achievements in this study can be references of conservation works at upstream watersheds in alpine region to prevent irreversible decaying of envirionment.
URI: http://hdl.handle.net/11455/33105
其他識別: U0005-1507201311074200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1507201311074200
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.