Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/33134
標題: 土壤組成模式之研究及在有限元素分析上的應用
A Study of a Soil Constitutive Model and Its Application in Finite Element Analysis
作者: 利寧真
Li, Ning-Chen
關鍵字: 組成模式
Constitutive Model
微平面
PLAXIS
三軸試驗
Microplane
Plaxis
triaxial test
出版社: 水土保持學系所
引用: [1] 周文允(2010),卵礫石土力學特性及異向軟化組成模式之研究,博士論文,中興大學土木工程學系。 [2] 張俊陽(2006),土壤地盤彈塑性分析之組合律建立,博士論文,中原大學土木工程學系。 [3] 陳英芳(2009),蘭陽平原沿海地區軟弱土壤沉陷潛能之研究,碩士論文,宜蘭大學土木工程學系 [4] 葛宇甯(2012),組成律模式在大地工程設計與分析的角色,台灣大學土木工程學系電子期刊,杜風50期。 [5] 鄧友福(2009),Excavation Behavior and Adjacent Building Response Analyses Using User Defined Soil Models in PLAXIS.,碩士論文,台灣科技大學營建工程學系。 [6] 潘茂森(2006),網格演化有限元素分析於大地工程之應用,碩士論文,台灣科技大學營建工程學系。 [7] Bazant ZP, Oh BH.(1985), “Microplane model for progressive fracture of concrete and rock. ”, J Eng Mech ASCE;111(4):559–82. [8] Bazant ZP, Xiang Y, Prat PC.(1996), “Microplane model for concrete I:stress–strain boundaries and finite strain.”, J Eng Mech ASCE;122(3):245–54. [9] Bazant, Z. P., Caner, F. C., Carol, I., Adley, M. D., and Akers, S. A. (2000), “Microplane model M4 for concrete. I: Formulation with work-conjugate deviatoric stress.”, Journal of Engineering Machanics,126(9), 944-953. [10] Bazant ZP, Zi G.(2003), “Microplane constitutive model for porous isotropic rocks. ”, Int J Numer Anal Meth Geomech;27:25–47. [11] Been K, Jefferies MG.(1985),“A state parameter for sands. ”, Geotechnique;35(2):99–112. [12] Carol I, Bazant ZP.(1997), “Damage and plasticity in microplane theory.”, Int J Solid Struct;34:3807–35. [13] Carol I, Jirasek M, Bazant ZP.(2001), “A thermodynamically consistent approach to microplane theory. Part I. Free energy and consistent microplane stresses. ”, Int J Solid Struct;38:2921–31 [14] Chang, K. T. and Sture, S.(2006), “ Microplane modeling of sand behavior under non-proportional loading”, Computers and Geotechnics, 33(3), 177-187. [15] Hasegawa T, Bazant ZP.(1993), “Nonlocal microplane concrete model withrate effect and load cycles I: general formulation.”, J Mater Civil EngASCE;5(3):372–93. [16] Li XS and Wang Y,(1998), “Linear representation of steady-state line for sand. ”, Geotechnique,124(12): 1215-1217. [17] Li XS, Dafalias YF.(2000), “Dilatancy for cohesionless soils.”, Geotechnique;50(4):449–60. [18] Lee, K. L and Seed, H. B.,(1967), “Drained characteristics of sands .”, J. Soil Mech. Found. Div., ASCE, 93(SM6)117-141. [19] Pyke R.(1979), “Nonlinear soil models for irregular cyclic loadings.”, J Geotech Eng ASCE;105(GT6):715–26. [20] Pradhan TBS, Tatsuoka F.(1989), “On stress dilatancy equations of sand subjected to cyclic loading.”, Soils Foundations;29(1):65–81. [21] PLAXIS 2D,Version 9.0 - Material Model Manual. [22] PLAXIS 2D,Version 9.0 - Reference Manual. [23] PLAXIS 2D,Version 9.0 - Tutorial Manual. [24] PLAXIS 2D,Version 9.0 - General Info Manual [25] Vahid Galavi(2007), “ A Multilaminate Model for Structured Clay incorporating Inherent Anisotropy and Strain Softening”, PhDthesis,Graz University of Technology. [26] Jonathan de Boyne Pollard (2010), “The gen on function calling conventions.”, Frequently Given Answers. (http://en.wikipedia.org/wiki/X86_calling_conventions) [27] DLL資訊參考網頁:http://msdn.microsoft.com/zh-tw/library/1ez7dh12(VS.80).aspx)。
摘要: 在大地工程的開挖或填土等各項作業中,土體的穩定性及工程上的設計,可藉由土壤組合律及結合數值分析法(如有限元素或有限差分法),來分析反應。Chang and Sture(2006)以微平面理論的架構(Bazant et.,2000)為基礎,發展了可模擬土壤受剪變形產生異向性及應力軸轉動的行為之組成模式。本研究主要依據此組成模式,將原模式中的12個參數化簡為9個參數後,結合有限元素法來進行分析,模擬傳統三軸試驗的土壤應力應變行為。利用PLAXIS 程式內建的user-defined soil model 功能,將所建構之組成模式導入PLAXIS以進行有限元素分析,再以Sacramento河砂土(Lee and Seed,1967)之三軸排水試驗資料做驗證,結果顯示,本研究建構了具備可模擬三軸試驗的土壤組成模式,雖成功得結合有限元素數值分析方法,但模擬三軸不排水試驗的結果,其使用的參數仍需再調整。 最後,本研究利用PLAXIS內建的Soft Soil Model進行等向壓縮試驗求得初始的有效應力與體積應變,再將模式中的k參數進行初步的簡化,以提供後續研究的方向。 關鍵字:組成模式、微平面、PLAXIS、三軸試驗
The excavation or fill operations in geotechnical engineering usually considers soil stability which assisted with the soil constitutive law and numerical analysis software to increase the accuracy of engineering design. Based on the theory of microplane (Bazant et al.,2000), Chang and Sture (2006) had developed a constitutive model about soil deformation by shearing to generate anisotropy and the behavior of rotation of stress axis. According to the constitutive model, our study simplified 12 parameters of the constitutive model into 9 parameters to simulate soil behaviors of stress and strain by traditional triaxial tests with finite element method. Applying user-defined soil model built-in PLAXIS, we constructed the constitutive model to simulate triaxial CD test with Sacramento sand (Lee and Seed,1967). The simulated results were verified with the experiment ones. We successfully constructed the constitutive model for triaxial test modeling in PLAXIS. However, the parameters of triaxial CU test which we simulated still have to be adjusted further. Finally, the initial effective stress and volume strain were obtained from the isotropic compressive test through the Soft Soil model built-in PLAXIS. After that, k parameter was simplified in the model to provide the orientation of the study in the future. Keywords:Constitutive Model , Microplane, Plaxis, triaxial test
URI: http://hdl.handle.net/11455/33134
其他識別: U0005-1007201212243900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1007201212243900
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.