Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/33153
標題: 土砂運移對於陳有蘭溪河床演變之影響
The change of river morphology caused by sediment transport in Chenyoulan River
作者: 施姵瑜
Shih, Pei-Yu
關鍵字: 陳有蘭溪
Chenyoulan river
河道變遷
辮狀指數
隘口
river morphology
Braiding Index
出版社: 水土保持學系所
引用: 林慶偉 (1996),「南投縣和社地區崩塌地發育之地質影響因子,地工技術」,57,5-16。 洪如江(1996),「賀伯颱風、新中橫公路與坍方及土石流災害」,地工技術,57,25-30。 陳宏宇(2000),「神木村南側出水溪上游土石流發生部之地質特性探討」,行政院國家科學委員會專題研究計畫成果報告。 陳信雄(1995),「崩塌地調查與分析」,渤海堂出版社。 陳樹群、賴益成(2004),「水庫集水區土砂評量與整治率評估模式」,中華水土保持學報,35(1),53-67。 陳樹群、安軒霈(2006),「土石流入匯主流形成沖積扇型態之渠槽試驗」,中華水土保持學報,37(3), 317-326。 陳少謙、陳樹群(2011),「神木集水區土砂產出對陳有蘭溪河道變遷影響之探討」,國立中興大學水土保持學系碩士論文。 陳弘恩(2005),「降雨引發坡地淺崩塌模式之建立與探討」,國立交通大學土木工程學系碩士論文。 張紅武、趙連軍、曹豐生(1996),「遊蕩河型成因及其河型轉化問題的研究」,人民黃河,10:11-15。 張瑞津、沈淑敏、劉盈邵 (2001),「陳友蘭溪四個小流域崩塌與土石流發生頻率之研究」,國立台灣師範大學地理學系地理研究報告,34,63-83。 張歐陽、金德生、陳浩(2000),「遊蕩河型造床實驗過程中河型的時空演替和複雜響應現象」,地理研究,19(2):180-188。 經濟部水利署第四河川局(2010),「濁水溪整體疏濬計畫」。 錢寧、周文浩(1965),「黃河下游河床演變」,科學出版社。 錢寧、張仁、周志德(1987),「河床演變學」,科學出版社。 錢意穎,郭青超,周文浩(1993),「黃河幹流水沙變化與河床演變」,中國建材工業出版社。 謝鑒衡(1982),「河流泥沙工程學(上冊)」,水利出版社。 謝正倫(1997),「中部地區土石流現場調查與分析」,農業工程學報,43(3),31-45。 蘇定義(1998),「南投縣和社溪沿線土石流之工程地質特性探討」,國立臺灣大學地質學研究所碩士論文。 Ashmore, P.E., Parker, G. (1983). “Confluence scour in coarse braided stream.”, Water Resources Research ,19,392– 402. Ashmore, P. (1991). “Channel morphology and bed load pulses in braided, gravel-bed streams.” Geogr. Ann. 73 A (1), 37-52. Brice, J.C. (1960). “Index for description of channel braiding.” Geological Society of America Bulletin ,71,1833. Brice, J.C. (1964). “Channel patterns and terraces of the Loup Rivers in Nebraska.” Geological Survey Professional Paper 422-D. Chew, L., Ashmore, P. (2001). “Channel adjustment and a test of rational regime theory in a proglacial braided stream. ” Geomorphology ,37,43–63. Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.L., Willett, S.D., Hu, J.C., Horng, M.J., Chen, M.C., Stark, C.P., Lague, D., Lin, J.C. (2003). “Links between erosion, runoff variability and seismicity in the Taiwan orogen.” Nature ,426, 648-651. Davies, T. R.H., Korup, O. (2007). “Persistent alluvial fanhead trenching resulting from large, infrequent sediment inputs.” Earth Surface Processes and Landforms Earth Surf. Process. Landforms ,32, 725–742. Egozi, R. and Ashmore, P. (2008). “Defining and measuring braiding intensity.” Earth Surface Processes and Landforms Earth Surf. Process. Landforms ,33, 2121–2138. Geli, L., Bard, P.Y., and Jullien, B. (1988). “The effect of topography on earthquake ground motion: A review and new results .” Bulletin of the Seismological Society of America ,78, 42–63. Gilbert, G. K. (1914), “The Transportation of Debris by Running Water,” U. S. Geol. Survey, Prof. 86: 259. Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P. (2008). “The rainfall intensity–duration control of shallow landslides and debris flows.” Landslides ,5,3–17. Hong, L.B., Davies, T. R. H. (1979). “A study of stream braiding. ” Geological Society of America Bulletin 90(Part II),1839 –1859. Lane, E. W. (1955). “The Importance of Fluvial Morphology in Hydraulic Engineering,” Proc., ASCE, 745(81): 17. Lin, C.W., Shieh, C.L., Yuan, B.D., Shiehb, Y.C, Liua, S.,and Lee, S.Y. (2003). “Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan. ” Engineering Geology ,71,49–61. Lin, C.W., Horng, M.J., Chen, T.C., Milliman, J., Stark, C.P., Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Lin, J.C., and Hsu, M.L., (2004). “Earthquake-triggered increase in sediment delivery from an active mountain belt.” Geology 32, 733-736. Mosley, P. M. (1976). “An experimental study of channel confluences.” Journal of Geology ,84, 535–562. Mosley, P. M. (1982). “Analysis of the effect of changing discharge on channel morphology in stream uses in a braided River, Ohau River, New-Zealand.” Water Resources Research, 18, 800–812. Nicholas, A.P. (2000).“Modelling bedload yield in braided gravel bed rivers.”, Geomorphology 36 ,89–106. Schumm, S. A.(1977) “The Fluvial System”
摘要: 台灣山區地質脆弱、地形陡峭,岩性脆弱之集水區流域常因豪雨沖刷造成山區坡體山崩及土石流,其產生之大量崩塌材料會隨著水流的搬運作用進入到下游河道,形成河流中的輸砂量,並使得原有河道型態發生改變。陳有蘭溪與其子集水區和社溪流域自1996年賀伯颱風侵襲後,在集水區上游造成大量崩塌並引發土石流,至此每當有颱洪事件屢次引發嚴重崩塌及土石流事件,為了解陳有蘭溪及和社溪受到上游來砂而產生之河床型態演變影響,本研究採用正射影像及數值高程模型進行陳有蘭溪及和社溪受到上游巨量土砂進入造成河相演變分析,選定河道演變因子分別為河道平面型態及斷面積變化量、河道寬度、辮狀指數、主深槽高程,並由於山區河流之走向受到構造運動影響,其沿程構造和岩性的差異,常常發展形成寬窄相間的蓮藕節狀之河道外形,故本研究加入地形隘口分析討論。 研究發現河道型態大多以辮狀為主,針對河道辮狀指數及河道寬度關係上,其辮狀指數會隨著河道寬度的變化而呈現正相關,在主深槽高程方面則在支流入匯區段明顯淤高,最高達至15公尺。另由於地形隘口影響,部分土砂被攔蓄於隘口上游面,造成上游流路散亂,隘口由於窄縮使得水流能量加劇,有刷深河道現象並會往上游溯源侵蝕,隘口下游則因來砂量減少,河道會趨於下切,流路深槽明顯,但因其下游河寬較寬,流路可不受限制在河道中自由擺盪。
The special trail of landscape in Taiwan mountain area such as steep slope and fragile geology cause serious disasters in recent decade. Debris flow and landslide occurred frequently in recent years since typhoon Herb in 1996 in Chenyoulan river basin. The patterns of river were changed when the massive debris went down to the river and caused damages in Taiwan mountain area. In order to figure out the relationship between sediment yield and river morphology in Chenyoulan river, the study introduced aerial photos and DEM models to analyze the patterns of river, braiding index, channel level and width of the river. Due to the different trends of mountains in Chenyoulan river basin, the study also consider the factor like mountain pass to investigate the effect of river morphology in chenyoulan river. The study showed that braiding index and width of the river are high related. Sediment deposited in the convergence of rivers, especially in the main channel. The flows were scattered in upper side of mountain pass during the sediment were blocked before they went into the mountain pass. The channels were incised in downstream of the mountain pass because reduce of sediment yield.
URI: http://hdl.handle.net/11455/33153
其他識別: U0005-2108201216434600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108201216434600
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.