Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/33159
標題: 地形及雨量特徵因子誘發老佛地區崩塌型土石流之研究
The Topographical and Rainfall Characteristics of the Landslide-triggered Debris Flow in Laofou Village
作者: 施虹如
Shih, Hung-Ju
關鍵字: 崩塌型土石流
Landslide-triggered Debris Flow
崩塌
TRIGRS
土石流
FLO-2D
Landslide
TRIGRS
Debris Flow
FLO-2D
出版社: 水土保持學系所
引用: 1. 方至聖(2010),「地質參數對降雨入滲無限邊坡安全係數之敏感度分析」,國立嘉義大學土木與水資源工程學系,碩士論文。 2. 王光謙、劉家宏(2005),「數字流域模型」,科學出版社。 3. 王志賢(2007),「泥砂顆粒組成對黏性土石流體流變參數影響之研究」,國立成功大學水利及海洋工程學系,博士論文。 4. 王姵兮(2007),「應用TRIGRS 模式評估降雨及入滲誘發池上山棕寮地滑之影響研究」,國立中正大學應用地球物理研究所,碩士論文。 5. 行政院農委會水土保持局(2005),「水土保持手冊」。 6. 行政院農委會水土保持局(2011),「2011南瑪都颱風重大土石災例現勘報告」。 7. 吳佳郡(2006),「降雨誘發山崩之潛感分析初探」,國立暨南國際大學土木工程學系,碩士論文。 8. 吳政貞(2003),「土石流流況數值分析-以溪頭為例」,國立台灣大學土木工程研究所,碩士論文。 9. 李光敦(2007),「流域整體治理規劃與淹水資訊系統建置計劃(2/3)」,經濟部水利署水利規劃試驗所。 10. 協昌工程顧問有限公司(2012),「南瑪都老佛邊坡崩塌調查規劃計畫」,屏東縣政府。 11. 周必凡、李德基、羅德富、呂儒仁、楊慶溪(1991),「泥石流防治指南」,科學出版社,第2-87頁。 12. 林美聆、陳天健、洪鳳儀、賴達倫、王國隆、鍾俊弘、簡文鏜、盧彥旭、林俊佑、黃紀禎(2000),「陳有蘭溪流域土石流溪流潛勢分析與境況模擬方法之建立-出水溪、豐丘及和社一號野溪」,防災國家型科技計畫八十九年度成果報告。 13. 林衍丞(2009),「廣域山崩潛感分析模型力學-水力參數逆分析」,國立中央大學應用地質研究所,碩士論文。 14. 林暘壹、詹錢登、郭峰豪(2013),「角埔溪土石流流動模擬研究」,中華防災學刊,Vol(5)51-59。 15. 邱禎龍(2002),「台北縣三峽鎮白雞地區山崩引發土石流案例調查研究」,國立台灣大學地質科學系,碩士論文。 16. 財團法人中興工程顧問社(2010),「南投縣信義鄉神木地區土砂災害機制歷程調查及潛勢評估分析」,行政院農業委員會水土保持局。 17. 國家災害防救科技中心(2011),「100年坡地土砂災害衝擊評估」。 18. 畢嵐杰(2004),「地表及地表下降雨-逕流模式之研究」,國立中興大學土木工程學系,博士論文。 19. 陳文山(1995),「臺灣東部利吉層成因研究」,行政院國家科學委員會。 20. 陳弘恩(2005),「降雨引發坡地淺崩塌模式之建立與探討」,國立交通大學土木工程學研究所,碩士論文。 21. 陳宏宇(1998),「土石流」,地球科學園地第六期,3-11。 22. 陳則佑(2011),「應用點估法與TRIGRS程式分析奧萬大道路邊坡之破壞機率」,國立中興大學水土保持學系,碩士論文。 23. 陳建新、譚志豪、冀樹勇、蘇泰維(2011),「廣域降與促崩模式之建置及應用-以高屏溪流域為例」,中華水土保持學報,42(1):1-11。 24. 陳柏龍、陳天健、王振宇、蘇群雅(2012),「HEC-HMS應用於土石流堰塞現象之研究」,岩盤工程研討會,p863-872,苗栗。 25. 陳榮河、洪勇善(1999),「崩塌地整治工法之介紹」,地工技術,第72期,5-12。 26. 陳嬑璇(2002),「溪頭地區山崩潛感圖製作研究」,國立台灣大學土木工程研究所,碩士論文。 27. 陳嬑璇、譚志豪、冀樹勇(2011),「不同廣域降雨促崩分析模式於山崩預警應用之探討」,第十四屆大地工程學術研究討論會論文集。 28. 陳樹群(1994),「雙層筒狀模式在地下水吸附性污染物傳輸模擬上之應用」,中國環境工程學刊,4(2),119-129。 29. 陳樹群、吳俊鋐、王雁平(2010),「地震或降雨誘發崩塌之崩塌特性探討」,中華水土保持學報,41(2):94-112。 30. 陳樹群、蔡喬文、陳振宇、陳美珍(2013),「筒狀模式之土壤雨量指數應用於土石流防災警戒」,中華水土保持學報,44(2),131-143。 31. 游繁結(1987),「土石流發生機制之研究」,中華水土保持學報,18(2):28-40。 32. 游繁結(1990),「崩塌型土石流之機制研究(II),土石流衝擊力之探討」,行政院國家科學委員會防災科技研究報告,No.79-11。 33. 馮正一、劉怡安、張育瑄(2009),「應用TRIGRS分析集水區中尺寸坡地入滲與穩定性」,水土保持學報41(3):339-356。 34. 詹錢登(1997),「土石流理論」,教育部土木工程防災教育教材,86-土木-教材-C011。 35. 詹錢登(1999),「土石流及其防治對策」,教育部土木工程防災教育教材。 36. 廖美瑩(2006),「不同透水鋪面基層對入滲影響之研究」,中國科技大學土木與防災應用科技研究所,碩士論文。 37. 劉格菲、黃名村(2002),「土石流之現場數值模擬-應用於南投縣神木村」,中華水土保持學報,33(3):215-221。 38. 蔡誌崇(2004),「FLO-2D模式應用於土石流災害管理之研究」,國立中興大學水土保持學系,碩士論文。 39. 鄭傑銘(2003),「應用GIS進行豪雨及地震引致山崩之潛感性分析」,國立台灣大學土木工程學系,碩士論文。 40. 薛仲傑(2007),「FLO-2D模式於土石流數值模擬之應用」,國立成功大學土木工程學系,碩士論文。 41. 謝正倫(1993),「土石流發生與流動之數值模擬」,行政院國家科學委員會防災科技研究報告81-55號。 42. 鍾欣翰(2008),「考慮水文模式的地形穩定分析-以匹亞溪集水區為例」,國立中央大學應用地質研究所,碩士論文。 43. 蘇立明(2003),「二維數值模式應用於土石流災害模擬之研究」,國立台灣大學生物環境系統工程學系,碩士論文。 44. 蘇歆婷(2007),「降雨引發坡地淺崩塌風險評估模式之建立與應用」,國立交通大學土木工程學研究所,碩士論文。 45. 顧承宇、陳建忠、張怡文、許世孟、陳耐錦、溫惠鈺(2012),「氣候變遷下極端降雨引致廣域坡地災害評估技術之研究」,中華水土保持學報,43(1):75-84。 46. Aleotti, P., Polloni, G. (2003), “Two-dimensional model of the 1998 Sarno debris flows(Italy):preliminary results,” Debris-Flow Hazards Mitigation:Mechanics, Prediction, and Assessment, Pages 553-563. 47. Bagnold, R.A. (1954), “Experments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear,” Porceeding Royal Society of London, series A,225, pp.49-63. 48. Baum, R.L., Savage, W.Z., Godt, J. W. (2002), “TRIGRS – A Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis,” U.S., Geological Survey, Vol. 61 (Open-file Report 02-424). 49. Baum, R.L., Savage, W.Z., Godt, J. W. (2008), ”TRIGRS – A Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis Version 2.0,” U.S., Geological Survey, Vol. 75 (Open-file Report 2008-1159). 50. Beven, K.J., Kirkby, M.J. (1979), “A physically-based, variable contributing area model of basin hydrology,” Hydrological Sciences Billetin, 24, 43-69. 51. Bisanti, B., Molnar, P., Burlando, P. (2005), “Predicting rainfall triggered soil slips: A case study in the Emmental region (Switzerland),” 3rd Swiss Geoscience Meeting, Zurich. 52. Bourke, M.C., Thorp, M. (2005), “Rainfall-triggered slope failures in eastern Ireland. Irish,” Geography, 38(1), 1-22. 53. Chen, C.Y., Chen, T.C., Yu, F.C., Lin, S.C. (2005), “Analysis of time-varying rainfall infiltration induced landslide,” Environmental Geology, 48(4-5), 466-479. 54. Dietrich, W.E., Montgomery, D.R. (1998), “SHALSTAB: A digital terrain model for mapping shallow landslide potential,” http://socrates.berkeley.edu/~geomorph/shalstab/. 55. Einstein, H.A. (1950). “The bed‐load function for sediment transportation in open channel flows,” USDA tech. bull. no. 1026, U.S. Department of Agriculture, Washington, D.C. 56. Fukuoka, H., Sassa, K., Scarascia-Mugnozza, G. (1997), “Distribution of landslides triggered by the 1995 Hyogo-ken Nanbu earthquake and long runout mechanism of the Takarazuka golf course landslide,” Journal of Physics of the Earth, 45:83-90. 57. Garcia, R., Lopez, J.L., Noya, M., Bello, M. E., Bello, M. T., Gonzalez, N., Paredes, G., Vivas, M.I., O’Brien, J.S. (2003), “Hazard mapping for debris flow events in the alluvial fans of northern Venezuela,” Third International Conference on Debris-Flow Harzards Mitigation: Mechanics, Prediction and Assessment. P589-599. 58. Hubl, J., Steinwendtner, H. (2001), “Two-dimensional simulation of two viscous debris flows in Austria,” Physics and Chemistry of the Earth,Part C: Solar,Terrestrial & Planetary,Vol. 26,no.9, pp. 639-644. 59. Iverson, R.M. (2000), “Landslide triggering by rain infiltration,” Water Resources Research, Vol. 36, No. 7, pp. 1897-1910. 60. Johnson, A. M.(1965), “A model for debris flow.”, Thesis presented to Pennsylvania State University, University Park, Pennsylvania, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geology, pp. 232. 61. Johnson, A.M. (1965), “A model for debris flow,” Ph.D. Dissertation, University Park, Pennsylvania. 62. Jonathan, W.G., Rex, L.B., Jeffery, A.C. (2005), “Regional landslidehazard assessment for Seattle, Washington ,USA,” Landslides, Vol. 2, No. 4, pp.266-279. 63. Julien, P.Y., Lan, Y.Q. (1991). “On the rheology of hyperconcentration,” J. Hydr. Engr., ASCE , 117 (3 ), 346–353. 64. Julien, P.Y., O’Brien, J.S. (1997), “Selected notes on debris flow dynamics, Recent developments on debris flows,” Lecture note in earth sciences, Springer, Berlin, 144–162. 65. Khazai, B., Sitar, N. (2000), “Landslides in Native Ground: A GIS-Based Approach to Regional Seismic Stability Slope Stability Assessment,” http://www2.ced.berkeley.edu:8002/index2.html. 66. Lancaster, S.T., Hayes, S.K., Grant, G.E. (2002), “Modeling sediment and wood storage and dynamics in small mountainous watersheds,” Geomorphic Processes and Riverine Habitat, Water Science and application, Vol. 4, pp.85-102. 67. Major, J.J., Pierson, T.C. (1992), “Debris Flow Rheology:Experimental Analysis of Fine-Grained Slurries,” Water Resources Research,Vol.28,NO 3, 841-857. 68. Meyer‐Peter, E., Muller, R. (1948). “Formulas for bedload transport,” Proc., IAHRM 2nd Congr., Int. Assoc. for Hydr. Res., Stockholm, 39–64. 69. Montgomery, D.R., Dietrich, W.E. (1994), “A physically based model for the topographic control on shallow landsliding,” Water Resources Research, Vol. 30, pp. 1153-1171. 70. O’Brien, J.S. (2006), “2006 version: FLO-2D Users Manual,” available on http://www.flo-2d.com. 71. O’Brien, J.S., Julien, P.Y. (1985), “Physical properties and mechanics of hyperconcentrated sediment flow,” Specialty Conf. On the Delineation of Landslides, Flash Floods and Debris Flow Hazards in Utah, Utah Water Research Lab., Univ. of Utah at Logan,Utah, pp.260-279. 72. O’Brien, J.S., Julien, P.Y., Fullerton, W.T. (1993). “Two-Dimensional Water Flood and Mudflow Simulation,” Journal of Hydraulic Engineering-Asce, 119(2), 244-261. 73. O''Brien, J.S., Julien, P.Y. (1988). “Laboratory analysis of mudflow properties,” J. Hydr. Engrg., ASCE , 114 (8 ), 877–887.9fn J. Hydraul. Eng. 74. Okada, K. (2002). “Soil Water Index,” Weather service bulletin, 69.5, 67-97. (in Japanese) 75. Okura, Y., Kitahara, H., Ochiai, H., Sammori, T., Kawanami, A. (2002), “Landslide fluidization process by flume experiments,” Engineering Geology, 66:65–78. 76. Pack, R.T., Tarboton, D.G., Goodwin C.N. (1998), “The SINMAP approach to terrain stability mapping,” Proceedings of 8th Congress of the InternationalAssocation of Engineering Geology (eds. Moore, D., Hungr, O.), Rotterdam, A. Balema Publisher, pp. 1157-1165. 77. Pack, R.T., Tarboton, D.G., Goodwin, C.N. (2001), “Assessing Terrain Stability in a GIS using SINMAP,” in 15th annual GIS conference, GIS 2001, Vancouver, British Columbia, February 19-22. 78. Paolo, D''Odorico, Fagherazzi, Sergio, Rigon, Riccardo, (2001), “Potential for landsliding: Dependence on hyetograph characteristics,” Journal of Geophysical Research, Vol. 110, No. F1, F01007. 79. Phillip, W., Associates, Ltd., (1995), “Design Guidelines for Tidal Channels in Coastal Wetlands,” Prepared for US Army Corps of Engineers, Waterways Experiment Station, San Francisco, CA. 80. Reid, M.E. (1994), “A pore-pressure diffusion model for estimating landslide-inducing rainfall,” J. Geol. 102, 709-717. 81. Salciarini, D., Godt, J.W., Savage, W.Z., Conversini, P., Baum, R.L., Michael, J.A. (2006), “Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy,” Landslides, 3, 181-194. 82. Stehman, S.V., “Selecting and interpreting measures of thematic classification accuracy,” Remote Sensing of Environment, 62(1), 77-89. 83. Sugawara, M. (1972). “Analytical method of outflow,” Kyoritsu Shuppan Co., Ltd. (in Japanese) 84. Takahashi, T. (1978), “Mechanical Characteristics of Debris Flow,” J. Hyd. Div., ASCE, 104, 1153-1169. 85. Takahashi, T. (1991), “Debris Flow,” IAHR , Monograph, A. A.Balkema, Rotterdam, The Netherlands. 86. Tan, S.B., Lim, T.L., Tan, S.L., Yang, K.S. (1987), “Landslide problems and their control in Singapore,” In: 9th Southeast Asian Geotechnical Conference, Bangkok, Thailand, 1-25 - 1-36. 87. Wang, Y.Y., Fei, X.J., Chen, R. (2000), “A modified rheological model of natural debris flows,” Chinese Science Bulletin, 45(8), 743-748. 88. Woolhiser, D.A. (1975), “Simulation of unsteady overland flow,” Unsteady flow in open channels, Mahmood, K. and Yevjevich, V., eds., Water resources publications.
摘要: 台灣近年來極端降雨事件頻繁,降雨強度與降雨延時的增加,所造成的災害不再只是局限於單一型災害,本研究以2011年8月27日至31日南瑪都颱風期間於屏東縣滿州鄉老佛山所發生之崩塌型土石流進行探討,首先利用TRIGRS模式進行崩塌潛感區位預測,再搭配航照圖以地形學角度去針對老佛山崩塌前的地貌特徵進行剖析,並從南瑪都颱風所帶來的降雨型態去看老佛山崩塌之影響;接續利用FLO-2D模式模擬老佛三場土石流堆積與淹沒範圍來進行流變參數率定,並使用筒狀模式來轉換時雨量作為流量資料,以彌補缺乏實測流量資料的問題。 本研究由於欠缺實測之地質及水文資料的情況下,能做到預測整個老佛集水區之崩塌潛勢區位,未能精確地模擬出實際崩塌面積。從災害發生前之航照圖以及地形橫剖面中可發現,南側支流的源頭部分在歷經2005年海棠颱風、2006年1226恆春大地震以及2009年莫拉克颱風所影響,邊坡已有些許滑落以及沖蝕裸露等現象出現,由於源頭的地勢呈現碗狀下凹易積水,使得南瑪都颱風長達四日延時的降雨,造成土壤達到飽和產生裂縫,並加速地表入滲造成地下水位抬昇,提高引發大規模崩塌發生的可能性。 從FLO-2D模式對老佛三次土石流模擬之結果顯示,假設模擬第一場土石流第1小時至第39小時之體積濃度假設為0%,而第39小時至第40小時,體積濃度假設為30%,第二場土石流之體積濃度48%,第三場土石流之體積濃度為48%時,經率定三場模擬結果顯示與實際堆積厚度最為接近。
The heavy rainfall events with high intensity and long duration increased in the recent years in Taiwan, and the increasing heavy rainfall events also induced the complex disasters. The study focuses on the simulation of the landslide-triggered debris flow in Laofou Village in Pingtung County caused by Typhoon Namando during August 27 to 31, 2011. The study adopts the TRIGRS model to assess the landslide potential in the Laofou watershed, discusses the geomorphologic and rainfall characteristic of Laofou landslide, and uses FLO-2D to simulate the debris flow-induced disaster in the Laofou village. The study also uses Tank model to transfer the hourly rainfall to the surface runoff discharge which is used in the simulation of debris flow disaster. The TRIGRS can do the simulation of landslide potential in the Laofou watershed, but the accuracy of the simulation is not good because the study is deficient in the geological and hydrological data. The slight slide and erosion-induced bare surface had appeared in the source of south branch in the Laofou watershed after 2005 Typhoon Heitan, 2006 Earthquake, and 2009 Typhoon Morakot. The rainfall in the four days rainfall during 2011 Typhoon Nanmado infiltrates into the stratum from the tension cracks on the concave topography in the source of south branch in the Laofou watershed, and it also saturated soil, high ground water table, and the following large landslide. Based on the simulation result of FLO-2D for the three debris flow events in the Laofou watershed with the assumption of volumetric concentration as 0% from first to thirty-ninth hrs, 30% from the thirty-ninth to fortieth hrs, the simulation result shows both of the volumetric concentration of the second and third debris flow events are 48%. And the simulation result is very close to the real deposition in the Laofou watershed.
URI: http://hdl.handle.net/11455/33159
其他識別: U0005-3007201316195700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3007201316195700
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.