Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/33161
標題: 均勻降雨下植生地表水流之解析解
An analytic solution of vegetated surface flow under a uniform rainfall
作者: 胡秀怡
Hu, Siou-Yi
關鍵字: 孔彈性介質理論
poro-elasticity theory
漫地流
均勻降雨
植生
拖曳力
overland flow
uniform rainfall
vegetation
drag force
出版社: 水土保持學系所
引用: 1. 行政院農業委員會水土保持局,2006,水土保持植物解說系列_坡地植生草類與綠肥植物,白沙紙品印刷股份有限公司,南投。 2. 呂明和(譯者)、黃逸群(譯者),2003,MATLAB在工程上的應用,美商麥格羅‧希爾國際股份有限公司,台灣。 3. 呂珍謀、詹勳全、黃偉哲,2008,「河道植生群型態對水流之影響」,農業工程學報,39(1):95-107。 4. 宋長虹,1993,「水波作用下多孔彈性底床動力反應之研究」,博士論文,國立台灣大學土木工程學系研究所,台北。 5. 李育修,2008,「渠槽植株排列對泥砂沖淤及流況影響之研究」,碩士論文,國立中興大學水土保持學系研究所,台中。 6. 許煜聖,2003,「水流流經植生地表之水理分析」,碩士論文,國立中興大學水土保持學系研究所,台中。 7. 郭律君,2005,「水流流經群樁之水理特性研究」,碩士論文,國立成功大學水利及海洋工程研究所,台南。 8. 陳右錚,2008,「透水性路面之水理分析」,碩士論文,國立中興大學水土保持學系研究所,台中。 9. 陳由聖、羅偉誠、呂珍謀(2010),「砂土孔隙中兩相流體特性對不透水薄層下地震表面波傳遞影響之剖析」,農業工程學報,56(4):11-26。 10. 施澄鐘,1986,數值分析,松崗電腦圖書資料有限公司,台北。 11. 孫永達,1998,「剛性透水底床明渠水流及其懸浮泥沙之分析」,碩士論文,國立台灣大學土木工程學系研究所,台北。 12. 楊山慶,2007,「草溝水理實驗之研究」,碩士論文,國立中興大學水土保持學系研究所,台中。 13. 楊佳錫,2010,「均勻降雨時坡地之水理分析」,碩士論文,國立中興大學水土保持學系研究所,台中。 14. 劉運澤,2007,「水流流經植生渠道之有限元素分析」,碩士論文,國立中興大學水土保持學系研究所,台中。 15. 劉誠達,2008,「水流流經植被區域之阻力研究」,碩士論文,國立交通大學土木工程研究所,新竹。 16. Baptist, M. J., V. Babovic, J. Rodriguez Uthurburu, M. Keijzer, R. E. Uittenbogaard, A. Mynett and A. Verwey, 2007, “On inducing equations for vegetation resistance,” Journal of Hydraulic Research, 45(4):435-450. 17. Biot, M. A., 1956a, “Theory of propagation elastic waves in a fluid saturated porous solid. I. low-frequency range,” Journal of Acoustical Society of America, 28:168-178. 18. Biot, M. A., 1956b, “Theory of propagation elastic waves in a fluid saturated porous solid. II. high-frequency range,” Journal of Acoustical Society of America, 28:179-191. 19. Biot, M.A., 1962, “Mechanics of deformation and acoustic propagation in porous Media,” Journal of Physics, 33(4):1482-1498. 20. Carbonell, R. G. and S. Whitaker, 1984, “Heat and mass transfer in porous media,” Fundamentals of Transport Phenomena in Porous Media, pp.121-198. 21. Carman, P. C., 1937, “The determination of the specific surface area of powder I,” J. Soc. Chem. Ind., 57:225-234. 22. Dullien, F. A. L., 1979, Porous Media:Fluid Transport and Pore Structure, Academic Press, New York. 23. Fiener, P. and K. Auerswald, 2006, “Influence of scale and land use pattern on the efficacy of grassed waterways to control runoff,” Ecological Engineering, 27:208-218. 24. Hsieh, P. C. and S. Bolton, 2007, “Laminar surface water flow over vegetated ground,” Journal of Hydraulic Engineering, 133(3):335-341. 25. Huai, W. X., Y. H. Zeng, Z. G. Xu and Z. H. Yang, 2009, “Three-layer model for vertical velocity distribution in open channel flow with submerged rigid vegetation,” Advances in Water Resources, 32(4):487-492. 26. Iberall, A. S., 1950, “Permeability of glass wool and other highly porous media,” Journal of Research of the National Bureau of Standards, 45(5):398-406. 27. Kaviany, M., 1991, Principles of Heat Transfer in Porous Media, Springer, Berlin. 28. Kaviany, M., 1995, Principles of Heat Transfer in Porous Media, Second Edition, Springer, Berlin. 29. Kouwen, N., T. E. Unney and A. M. Hill, 1969, “Flow retardance in vegetated channels,” Journal of Irrigation Drainage, ASCE, 95:329-342. 30. Kubrak, E., J. Kubrak and P. M. Rowiński, 2008, “Vertical velocity distributions through and above submerged, flexible vegetation,” Journal of Hydrological Sciences, 53(4):905-920. 31. Leonard, L. A. and D. J. Reed, 2002, “Hydrodynamics and sediment transport through tidal marsh canopies,” Journal of Coastal Research, 36:459-469. 32. Li, R. M. and H. W. Shen, 1973, “Effect of tall vegetations on flow and sediment,” Journal of Hydraulic Engineering, ASCE, 99(5):793-814. 33. Morris, E. M., 1978. “The effect of the small-slope approximation and lower boundary condition on the solutions of the Saint Venant equations,” Journal of Hydrology, 40:31-47. 34. Nepf, H. M., 1999, “Drag, turbulence, and diffusion in flow through emergent vegetation,” Water Resources Research, 35(2):479-489. 35. Taylor, G. I., 1953, “Dispersion of soluble matter in solvent flowing slowly through a tube, ” Proceedings-Royal Society. Mathematical, Physical and Engineering Sciences, 219(1137):186-203. 36. Tsujimoto, T. and T. Kitamura, 1995, “Lateral bed-load transport and sand-ridge formation near vegetation zone in an open channel,” Journal of Hydroscience and Hydraulic Engineering, 13:35-45. 37. Wang, C. and P. Wang, 2007, “Hydraulic resistance characteristics of riparian reed zone in river,” Journal of Hydrologic Engineering, 12(3):267-273. 38. Wilson, C. A. M. E., O. Yagci, H. P. Rauch and N. R. B. Olsen, 2006, “3D numerical modelling of a willow vegetated river/floodplain system,” Journal of Hydrology, 327:13-21. 39. Wu, F. C., H. W. Shen and Y. J. Chou, 1999, “Variation of roughness coefficients for unsubmerged and submerged vegetation,” Journal of Hydraulic Engineering, ASCE, 125(9):934-942. 40. Wu, W., Z. He and S.Y. Wang, 2006, “Flow conveyance and sediment transport capacity in vegetated channels,” Proc. 7th Conference on Hydroscience and Engineering, Philadelphia, USA, pp.1-12. 41. Wu, W. and Z. He, 2009, “Effects of vegetation on flow conveyance and sediment transport capacity,” International Journal of Sediment Research, 24(3):247-259. 42. Zhao, M., W. Huai, J. Han, Z. Xie and J. Guo, 2012, “Uniform laminar wetland flow through submerged and floating plants,” Journal of Hydraulic Research, 50(1):52-59.
摘要: 植生的存在不僅影響水流流況,還會增加水流之阻抗,遲滯水流進而減緩地表沖刷。爰此,為瞭解植生對於均勻降雨之地表水流流速和水深之影響,以Navier-Stokes 方程式和多孔介質層流模式為理論架構,以期研究成果在環境和生態工程之設計及地表水的管理上能有所助益。 本文從水力學的觀點出發,將流場分成均質水層、水-草混合層和透水土層(以下簡稱水層、草層、土層),且將透水土層分為無限厚及有限厚兩類型進行討論,以Navier-Stokes 方程式描述水層之流況,將草、土二層中之流體視為孔隙介質流的運動,且引入宋(1993)所建立多孔介質層流模式加以描述之,最後搭配Runge-Kutta 法而求得其半解析解。 文中依水深與草層高度之相對關係將水理現象分成非浸沒型(水深不及草高)、浸沒型(水深漫過草高)與混合型三部分討論,並與楊(2010)裸露地上均勻降雨之情況進行比較,結果顯示植生存在之地表,其水流流速明顯地下降。此外探討坡度、降雨強度、土層厚度和比滲透係數等因子對流況之影響,及在各種狀況下植生阻力之變化,發現增加坡度、減緩降雨強度、增加土層厚度和減少草層植生疏密度皆可調降地表水深。其中以坡度之影響最為顯著,係控制水面剖線型式的主要參數,而土層厚度在浸沒狀態時對水深之影響極小,而在非浸沒型態時則可看出其差異,但水面剖線還是隨著土層厚度的增加而下降。增大植株直徑會使草層承受水流之拖曳力下降,而增加降雨強度和坡度則會使得該拖曳力上升。植株直徑與株高之比值較大時,坡度對草層拖曳力的影響小;而植株直徑與株高之比較小時,坡度對草層拖曳力有顯著的影響。
The existence of vegetation which increases the resistance to flow and retards the flow changes the surface water flow velocity and water depth, and thus reduces the surface erosion. To understand the effect of vegetation on flow velocity and water depth, a semi-analytical approach was proposed to study surface water flow passing over vegetated areas under a uniform rainfall event. A one-dimensional hydraulic model was constructed by using the Navier-Stokes equations and the theory of poro-elasticity. The results are believed to be helpful in environmental and ecological engineering design and surface water management. In this study, the flow region was divided into three layers-- homogenous water layer, water/vegetation layer and permeable soil layer (briefly denoted by water layer, vegetation layer, and soil layer) and the permeable soil layer was divided into two types of infinite thickness and finite thickness. The flow of the water layer was governed by the Navier-Stokes equations. The vegetation and soil layers were both regarded as porous media and Song’s (1993) laminar model modified from Biot’s theory of poroelasticity was applied. The semi-closed solutions were then obtained via the Runge-Kutta method. Three cases--submerged vegetation, emergent vegetation and submerged-emergent vegetation were discussed. The results were compared with those of the unplanted ground case (Yang, 2010) and showed that the flow velocity obviously decreases with increasing vegetation density. Additionally, the effect of slope, rainfall intensity, thickness of soil layer and permeability on the flow and the resistance resulting from vegetation were also discussed. The water depth decreases with increasing the slope and soil thickness, decreasing the rainfall intensity, and reducing the vegetation density. The slope factor affects the flow most significantly. The soil thickness factor has an effect on the flow depth in the emergent condition, but it doesn’t in the submerged condition. The drag force decreases with increasing the plant diameter, but increases with increasing the rainfall intensity and slope. When the ratio of plant diameter to plant height is large, the slope factor has little effect on the drag force of the grass layer. However, when the ratio is small, the slope factor becomes very significant.
URI: http://hdl.handle.net/11455/33161
其他識別: U0005-0708201210024500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0708201210024500
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.