Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/33164
標題: 堰塞壩溢頂潰決現地試驗與室內試驗
Comparison of Landslide Dam Overtopping Failure for Field and Laboratory Experiment
作者: 徐子陽
Hsu, Tzu-Yang
關鍵字: 堰塞湖
Landslide dam
現地試驗
水文歷線
Field experiment
Hydrograph
出版社: 水土保持學系所
引用: 1. 交通大學防災研究中心(2003),「堰塞湖引致災害防治對策之研究」,水利署水利規劃試驗所報告。 2. 林琮文(2011),「堰塞壩潰決型態對下游河床變化影響之探討」,碩士學位論文 3. 許中立、陳樹群、施保呈、陳二銘、邱欣蔚、張蘇能(2010),「莫拉克風災區之堰塞湖防災與警戒」,工程環境會刊,24:85~98。 4. 陳樹群(1999),「堰塞湖潰決機制與減災工法研究」,中華水土保持學報,30(4):299~311。 5. 陳樹群、吳俊鈜(2009)「莫拉克颱風引致小林村堰塞湖之形成與潰決歷程」,中華水土保持學報,40(4):377~392。 6. 北海道開發局(2007),「十勝川千代田實驗水路概要」,簡報資料。 7. 田畑茂清、水山高九、井上公夫(2002),「天然ダムと災害」,古今書院,東京。 8. 島田友典、度邊康玄、橫山洋、辻珠希(2009),「十勝川千代田実驗水路における橫断堤を用いた正面越流破堤実験」,寒地土木研究所月報,670:8~19。 9. 高橋保、匡尚富(1988),「天然ダムの決壊による土石流の規模に関する研究」,京都大學防災研究所年報,第31號,B-2,1988。 10. Brambilla S., Ferrari F. and Gatti D. et al. (1999). ”Cascade dam failure analysis using a lagrangian specification of the flow field[J].” 28th IAHR Confess. Graz, Austria. 11. Capart, H. (2013). “Analytical solutions for gradual dam breaching and downstream river flooding,” Water Resour. Res., 49 12. Casagli, N., L. Ermini and G. Rosati (2003). “Determining grain size distribution of the material composing landslide dams in the Northern Apennines: sampling and processing methods,” Engineering Geology, 69: 83~97. 13. Chinnarasri, C., T. Tingsanchali, S. Weesakul and S. Wongwises (2003). “Flow Patterns and Damage of Dike Overtopping,” International Journal of Sediment Research, 18(4), 301~309. 14. Costa, J. E. and R. L. Schuster (1988). “The Formation and Failure of Natural Dams,” Geological Society of America Bulletin, 100: 1054~1068. 15. Costa, J. E. and R. L. Schuster (1991). “Documented historical landslide dams from around the world,” Open-File Report (United States Geological Survey), 91~239. 16. Cui, P., Chen, X., Waqng, Y. and Hu, K., (2005). “Jiangjia Ravine debris flow in south-western China,” Debris-flow Hazards and Related Phenomena, M. Jakob and O. Hungr (eds). 17. Cui, P., Y.Y. Zhu, Y.S. Han, X.Q. Chen and J.Q. Zhuang (2009). “The 12 May Wenchuan Earthquake-induced Landslide Lakes: Distribution and Preliminary Risk Evaluation,” Landslides, 6: 209~223. 18. Dai, F.C., C.F. Lee and Y.Y. Ngai (2002). “Landslide risk assessment and management: an overview,” Engineering Geology, 64: 65~84. 19. Ermini, L. and N. Casagli (2003). “Prediction of the Behaviour of Landslide Dams using a Geomorphological Dimensionless Index,” Earth Surface Processes and landforms, 28:31-47. 20. Guzzetti, F., A. Carrara, M. Cardinali and P. Reichenbach (1999). “Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy,” Geomorphology, 31: 181~216. 21. Hunt, B. (1984), “Dam-break solution,” J. Hydraul. Eng., 110, 675–686. 22. Iverson, R.M., Costa, J.E., and LaHusen, R.G., (1992). “Debris-flow flume at H.J. Andrews Experimental Forest, Oregon,” USGS Open-File Report 92~483. 23. Iverson, R.M., Logan, M.R., LaHusen, G. and Berti, M., (2010). “The perfect debris flow? Aggregated results from 28 large-scale experiments,” Journal of Geophysical Research, 115: F03005, doi:10.1029/2009JF001514. 24. Johnson, C.G., Kokelaar, B.P., Iverson, R.M., Logan, M., LaHusen R.G., and Gray, J.M.N.T., (2012). “Grain-size segregation and levee formation in geophysical mass flows,” Journal of Geophysical Research, 117: F01032, doi:10.1029/2011JF002185. 25. Korup, O. (2002). “Recent research on landslide dams - a literature review with special attention to New Zealand,” Progress in Physical Geography, 26: 206~235. 26. Li, Y., Liu, J., Hu, K. and Su, P., (2012). “Probability distribution of measured debris-flow velocity in Jiangjia Gully, Yunnan Province, China,” Natural Hazards, 60: 689~701. 27. Liao, W. M. and H.T. Chou (2003). “Debris flows generated by seepage failure of landslide dams”, Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Switzerlan, .315~325. 28. Liu, N., Z. Chen, J. Zhang, W. Lin, W. Chen and W. Xu, (2010). “Draining the Tangjiashan Barrier Lake,” Journal of Hydraulic Engineering, ASCE, 914~923. 29. Niu Z., P., Xu W., L., Li N., W., Xue Y., (2012). “Experimental investigation of the failure of cascade landslide dams.” 30. Schuster, R. L. (2000). “Outburst debris flows from failure of natural dams,” Proceedings 2nd International Conference on Debris Flow Hazard Mitigation, 29~42. 31. Schuster, R. L. and Costa J. E. (1986). “A Perspective on Landslide Dams,” Landslide Dams, Processes, Risk and Mitigation, 1~20. 32. Takahashi, T. (2007). “Debris flows: Mechanics, Prediction and Countermeasures,” Taylor and Francis, Leiden.
摘要: 極端氣候日益頻繁,豪大雨侵襲常導致台灣地區產生許多崩塌與土石流進入河道,進而形成堰塞壩,堰塞湖水流溢頂造成壩體潰決,對河道成二次破壞,並威脅著下游地區民眾之生命財產安全。堰塞湖災害研究主要以災後現場調查、室內試驗以及數值模擬為主,但對於真實現場還原仍嫌不足。本研究於現地試驗站-惠蓀林場蘭島溪,利用攝影機與壓力式水位計進行堰塞壩溢頂潰決試驗,配合室內渠槽試驗,期能對堰塞湖災害得到更深入、真實之了解。 室內渠槽試驗結果顯示,壩體內的水位高度由上游往下游遞減,水流溢頂後約莫兩秒,壩體內水位達到最大值;水位變化之上升率與下降率相等,表示出、入流比率相等。壩體由滲流作用開始破壞下游面壩趾,溢頂潰決後壩體從原本的梯形變為三角形,水位面高於壩體,差距隨時間增加,但到達約5 cm差距後即維持定值,此時水流之垂直作用力與水平作用力達到平衡狀態。 現地試驗結果顯示,堰塞湖無論在蓄水亦或是潰決,其流速皆隨時間遞減,潰決出流量雖隨著時間遞減,但若潰口體積突然增大,則其流量也會突然增大。潰口發展可視為雙方向的擴展:下刷以及展寬。一般情況下,下刷量最大、展寬量其次,與水流作用力方向、大小有關。堰塞壩潰決所產生之強烈水流會使河道產生新的主深槽,且下游河道寬度沿著下游遞增,坡度遞減。 從水流前緣到達壩址接著溢頂至潰壩,若滲流現象不甚明顯,整體過程非常快速;若滲流現象較為顯著,則整體潰決時間平均增加約莫兩倍左右。潰口整體變化皆從V型變為U型。壩體潰決結構破壞與粒徑組成以及壩體壓密程度有關。
Due to the extreme climate, torrential rain cause Taiwan a lot of landslide and debris flow events, even turning into landslide dam collapse disaster. Research of the dammed lake mostly based on site investigation after disaster, laboratory experiment and numerical simulation. But they are still not precise for scene reoccurrence. This study used cameras and water level sensors for practicing field experiment of landslide dam overtopping failure in Landao creek, Huisun experimental forest. Laboratory experiment was also exceeded for supplying the insufficiency of field experiment in order to get accurate understanding of dammed lake disaster. On the basis of laboratory experiment, ascendant and descendent of water level variation in landslide dam are the same, indicate that inflow and outflow rate are the same. Because of the seepage, landslide dam start failing from downstream dam toe, and the shape turning into triangle from regular trapezoid. Water surface is higher than the dam after overtopping, and the gap increase with time due to flow force. According to the field experiment results, no matter whether the dammed lake is filling or out breach, water velocity is inversely proportional to time, and so is the outflow discharge. Breach development can be divided into degradation and expander. Under usual circumstances, degradation quantity is larger than the expander, due to the water force and flow direction. The strong flood induced by the dam failure would create a new flow path, and the river wide would increase from upstream to downstream, but the slope does opposite. If the seepage is small, the process of landslide dam failure is really quick, and vice versa. The procedure of breach development is always from V type to U type. Destruction of landslide dam is related to sediment composition and consolidation of the dam.
URI: http://hdl.handle.net/11455/33164
其他識別: U0005-3007201311272900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3007201311272900
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.