Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/33170
標題: 大型支撐深開挖數值模擬技術之研究─以台北101深開挖為例
Three-Dimensional Numerical Simulation Techniques in Large Scale Multi-Strutted Deep Excavation─ A Case History of Taipei 101 Deep Excavation
作者: 周彥妤
Chou, Yen-Yu
關鍵字: 三維數值模擬分析技術
3-D numerical analysis techniques
土壤模式
潛變效應
小應變效應
群樁
扶壁結構
soil models
creep effect
small strain effect
pile group
buttress structures
出版社: 水土保持學系所
引用: 參考文獻 1.內政部建築研究所,「臺北101大樓結構工程,規劃設計記錄C」, (2001)。 2.內政部建築研究所,「臺北101大樓結構工程施工監造紀錄C」, (2003)。 3.宋二祥、婁鵬、陸新征、沈委(2004)「某特深基坑支護的非線性有限元分析」,岩土力學,華東交通大學學報24(4), Vol.25, No.4。 4.富國技術工程股份有限公司,「台北國際金融大樓開發案補充地質調查及大地工程分析報告書」,(1997)。 5.張盧明、鄭明新、何敏、鄭玉之(2007)「深基坑開挖與錨杆支護FLAC 3D數值模擬分析」華東交通大學學報24(5), Vol.24, No.5。 6.Bin-Chen Benson Hsiung,2008. A case study on the behaviour of a deep excavation in sand. 7.Chang-Yu OU, Associate Member, ASCE, Dar-Chang Chiou, and Tzong-Shiann Wu 1996, Three-Dimensional Finite Element Analysis of Deep Excavations. 8.Chang-Yu Ou, Pio-Go Hsieh,2011. A simplified method for predicting ground settlement profiles induced by excavation in soft clay. 9.Chungsik Yoo, Dongyeob Lee,2008. Deep excavation-induced ground surface movement characteristics – A numerical investigation. Computers and Geotechnics 35 (2008) 231–252. 10.Chang-Yu Ou, Pio-Go Hsieh, Yi-Lang Lin ,2013. A parametric study of wall deflections in deep excavations with the installation of cross walls. Computers and Geotechnics 50 (2013) 55–65. 11.Ching-Han Yu,2011. On Design and Construction of Pile Group Foundation of Taipei 101. Geotechnical Engineering Journal of the SEAGS & AGSSEA,Vol. 42, No. 2, ISSN, pp.0046-5828. 12.Fa-Yun Lianga, Long-Zhu Chena, Xu-Guang Shi,2003. Numerical analysis of composite piled raft with cushion subjected to vertical load. Computers and Geotechnics 30 (2003) 443–453. 13.Gordon Tung-Chin Kung,2008.Comparison of excavation-induced wall deflection using top-downand bottom-up construction methods in Taipei silty clay. 14.Gordon Tung-Chin Kung, Chang-Yu Ou, C. Hsein Juang,2008. Modeling small-strain behavior of Taipei clays for finite element analysis of braced excavations. 15.Halidou Niandou, Denys Breysse,2007. Reliability analysis of a piled raft accounting for soil horizontal variability. Computers and Geotechnics 34 (2007) 71–80. 16.H.H. Zhang, J.C. Small,2000. Analysis of capped pile groups subjected to horizontal and vertical load. Computers and Geotechnics 26 (2000) 1-21. 17.I. Said, V. De Gennaro , R. Frank,2008. Axisymmetric finite element analysis of pile loading tests. 18.John C. Small , Hana L.S. Liu,2008.Time-settlement behaviour of piled raft foundations using infinite elements. Computers and Geotechnics 35 (2008) 187–195. 19.Kyung Nam Kim, Su-Hyung Lee, Ki-Seok Kim,Choong-Ki Chung, Myoung Mo Kim, Hae Sung Lee. Optimal pile arrangement for minimizing differential settlements in piled raft foundations. Computers and Geotechnics 28 (2001) 235–253. 20.L. D. Ta ,and J. C. Small,1997. An Approximation for Analysis of Foundations. Computers and Geotechnics, Vol. 20, No. 2, pp. 105-123, 1997. 21.L. zdravkovic,D. M. Potts and H. D. ST John,2005. Modelling of a 3D excavation in finite element analysis. Zdravkovic, L., Potts, D. M. & St John, H. D. (2005). Ge’otechnique 55, No. 7, 497–513. 22.Richard J. Finno, M.ASCE, and Jill F. Roboski, S.M.ASCE 2005. Three-Dimensional Responses of a Tied-Back Excavation through Clay. Ge’otechnique 55, No. 7, p.p 497–513. 23.Shong-Loong Chen , Cheng-Tao Ho, Chong-Dao Li, and Meen-Wah Gui,2011. Efficiency of buttress walls in deep excavations. Journal of GeoEngineering, Vol. 6, No. 3, pp. 145-156. 24.Youssef M. A. Hashash, P.E., M.ASCE, Camilo Marulanda, M.ASCE,Jamshid Ghaboussi, M.ASCE, andSungmoon Jung,2006. Novel Approach to Integration of Numerical Modeling and Field Observations for Deep Excavations.
摘要: 本研究選用台北國際金融中心大樓(以下簡稱台北101大樓)大型深開挖基地及其周邊之監測成果,以及三維數值模擬分析技術,來探討全尺寸深開挖變形行為。首先,根據地層之岩土力學試驗結果以及各類支撐結構之實際設計尺寸,來決定數值模型所需之各項材料參數。隨之,採用三維有限元素程式PLAXIS 3D建立台北101大樓之塔樓區全尺寸大型深開挖數值模型,並針對3D數值分析過程中,地層層次複雜度,以及結構元素數量等因子,對分析所造成之數值問題,提出相應之處理技巧及方式。同時,在分析中,採用軟化土壤模式: Soft Soil Creep Model (SSC-Model)、Soft Soil Model (SS-Model);硬化土壤模式: Hardening Soil Model (HS-Model)、Hardening Soil Model with Small-Strain (HSS-Model);以及Mohr-Coulomb Model (MC-Model)等5種不同之土壤模式,來模擬深開挖中,土壤之變形行為。藉由比較模擬結果及現場量測資料之差異,可評估不同土壤模式對深開挖變形行為之影響。此外,針對軟化土壤模式 (SSC-Model、SS-Model) 中,探討潛變效應對深開挖變形行為之影響。而在硬化土壤模式(HS-Model、HSS-Model)中,則檢核小應變效應楊氏模數衰減情況下,對深開挖變形行為之影響。最後,採用HSS-Model探討數值模型中,特定結構物如:樁基礎結構及扶壁結構,對數值模擬結果之影響。 由分析結果得知:採用5種土壤模式所得之塔樓區深開挖側向位移模擬結果中,硬化土壤模式(HS-Model、HSS-Model)之最終施工階段(7th階段施工)模擬值與監測值最為吻合。而軟化土壤模式(SSC-Model、SS-Model)及莫爾庫倫模式(MC-Model)之側向位移模擬值皆大於監測值。另外,在地表沉陷模擬結果中,採用5種土壤模式之模擬值,與監測值比較皆無法達到良好之吻合度。其中,軟化土壤模式模擬值偏高,而硬化土壤模式偏低,最後以MC-Model之模擬值較為接近監測值。再者,在軟化土壤模式中,雖其側向位移模擬值皆大於監測值,但採用SSC-Model並在加入潛變參數後,模擬值與監測值之吻合度可較為提高。另外,在硬化土壤模式中,HSS-Model 在加入參數γ0.7 (GS = 0.722G0時之剪應變)後,土壤產生之小應變楊氏模數衰減效應,會導致側向位移模擬值略為提高,使得模擬值與監測值更為吻合。在特定結構物方面,若於數值模型中,忽略樁基礎結構,則開挖區底面土層之隆起效應將更為顯著,此將使連續壁往開挖區外側傾斜,並導致側向位移模擬值偏小之結果(較監測值小)。另外,若忽略扶壁結構時,則連續壁之擋土能力將會降低,並導致側向位移模擬值偏大之結果(較監測值明顯大出許多)。最後,若在數值模型中,同時忽略樁基礎及扶壁結構,則側向位移模擬值將呈現局部鋸齒狀而較不平滑之曲線。
This study investigates the deformation behaviors of full-scale deep excavation of Taipei International Financial Center(TIFC or Taipei 101)construction project using comprehensive field monitoring data and three-dimensional (3-D)numerical analysis techniques. The required material model parameters of soil strata and various retaining and foundation structures were determined according to the laboratory tests and in-situ specifications. The numerical model of large-scale deep excavation at the Tower Zone of Taipei 101 construction project was established by PLAXIS 3D finite element program. A series of versatile manipulating techniques for 3-D numerical analysis was proposed to deal with various numerical problems resulted from complicate soil strata and huge number of structural elements. Meanwhile, five different soil models, namely, soft soil model series: Soft Soil Creep Model (SSC-Model) and Soft Soil Model(SS-Model), hard soil model series: Hardening Soil Model(HS-Model)and Hardening Soil Model with Small-Strain (HSS-Model)and common used soil model: Mohr-Coulomb Model(MC-Model)was adopted to simulate the soil deformation behaviors of deep excavation. Through the comparisons between simulations and measurements, one can evaluate the effect and predictive capabilities of various soil models on the prediction of ground movements in deep excavation. According to the simulations of soft soil model series(SSC-Model and SS-Model) and hard soil model series (HS-Model and HSS-Model), the creep(time effect)and the small strain(stiffness attenuation effect)effects on the deformation behaviors of deep excavation can be evaluated respectively. Finally, the effects of pile group beneath raft foundation and buttress structures behind diaphragm wall on the numerical simulations were also detected using HSS-Model. Based on the numerical results, the hard soil model series(HS-Model and HSS-Model)can give the best prediction on the lateral displacement of final construction stage(7th stage)of deep excavation at Tower Zone. Whereas the soft soil model series(SSC-Model and SS-Model)and common used soil model: Mohr-Coulomb Model(MC-Model)over predict the lateral displacement. On the hand, all the five soil models seem difficult to capture the corresponding ground settlement in the prediction. Among which, the soft soil model series over predict the ground settlement whereas hard soil model series under predict. Conclusively, the common used MC-Model gives a predictive ground settlement just in between the above two model series and a better coincidence with the measurements. In addition, although the SS-Model over predict the lateral displacement, it can give a better prediction if the creep effect is considered in the model, namely, the SS-Model is replaced by the SSC-Model. Moreover, for hard soil model series, the HSS-Model considers the attenuation of Young’s modulus with small strain increment(<E-5) using γ0.7 parameter (a shear strain which causes shear modulus GS attenuates into 70% of initial shear modulus G0 or GS = 0.722G0). The attenuation of soil stiffness promotes the lateral displacement and makes the predictions much closer to the measurements. For the pile group beneath raft foundation, the heaving of excavation bottom increases obviously and causes diaphragm wall back tilting to the active side if the pile group is neglected in the numerical model. As a result, the back tilting of diaphragm wall leads to a under prediction of lateral displacement. In addition, for the buttress structures behind diaphragm wall, the lateral displacement largely increases if the buttress structures are ignored in the numerical model. Eventually, it was found that the simulation of lateral displacement profile exhibits a zigzag-shape curve if both the pile group and buttress structures are omitted in the numerical model.
URI: http://hdl.handle.net/11455/33170
其他識別: U0005-2208201323170500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208201323170500
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.