Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/33172
標題: 大甲溪石岡壩下游河相演變分析
Evolution of River Morphology for the Reach Downstream of Shih-Kang Dam in Dajia River
作者: 安軒霈
An, Hsuan-Pei
關鍵字: 大甲溪
Dajai River
石岡壩
河川型態
Shih-Kang Dam
River Morphology
出版社: 水土保持學系所
引用: 1. 中區水資源局,(2009),「98年度石岡壩庫區淤積測量測量報告」,經濟部水利署,37。 2. 水利規劃試驗所,(2008),「大甲溪石岡壩下游河段河床穩定方案之研究」,經濟部水利署。 3. 水利規劃試驗所,(2010)「大甲溪流域整體治理規劃檢討(1/2)」,經濟部水利署,3-59。 4. 王信凱,(2000),「濕周-流量法應用於推估河川生態基流量之研究」,中興大學水土保持學系碩士論文。 5. 朱菱強,(2002),「水力幾何型態因子與河相關係之探討」,中興大學水土保持學系碩士論文。 6. 吳岳霖,(2007),「土壤沖蝕指標模式應用於石門水庫集水區土砂流失量推估之研究」,中興大學水土保持學系碩士論文。 7. 吳保生、馬吉明、張仁、府仁壽,(2003),「水庫及河道整治對黃河下游遊蕩性河道河勢演變的影響」,水利學報,12:12-20。 8. 張紅武、趙連軍、曹豐生,(1996),「遊蕩河型成因及其河型轉化問題的研究」,人民黃河,10:11-15。 9. 張歐陽、金德生、陳浩,(2000),「遊蕩河型造床實驗過程中河型的時空演替和複雜響應現象」,地理研究,19(2):180-188。 10. 陳中憲,(1988),「濁水溪上游及曾水溪上游河道輸砂量及泥砂來源之關係探討」,國立中興大學水土保持所碩士論文。 11. 陳榮松、畢嵐杰、賴任瑄,(2001),「水筒模式應用於水旱田之降雨-逕流模擬」,九十年度農業工程研討會,第341-348 頁。 12. 陳樹群,(2006),「水庫集水區崩塌地潛勢分析及崩塌土方量估算之研究(3/3)」,經濟部水利署,pp. 151-152。 13. 陳樹群,(2011),「筒狀模式建立坡地土砂災害警戒機制」,行政院農業委員會水土保持局。 14. 陳樹群、吳岳霖、蔡義誌,(2009),「台灣地區集水區土壤沖蝕量估算模組系統應用於石門水庫集水區及西南部泥岩區」。工程環境會刊,23:59-67。 15. 陳樹群、賴益成,(1999),「河川與集水區泥砂遞移率之推估研究」,中華水土保持學報,30(1):47-57。 16. 陳樹群、簡如宏、馮智偉、巫仲明,(1998),「本土化土壤沖蝕指標模式之建立」,中華水土保持學報,23(3):233-247。 17. 葛岳淵,(2010),「車籠埔斷層與梅山斷層之地電研究」,中央大學地球物理研究所博士論文,50-51。 18. 劉永得,(1989),“石門水庫上游集水區泥砂來源與運移特性之分析研究”,國立中興大學水土保持所碩士論文。 19. 歐陽元淳,(2002),「水庫集水區土壤沖蝕之研究-以石門、翡翠水庫為例」,國立台灣大學地理環境資源學系研究所,碩士論文。 20. 錢寧、周文浩,(1965),「黃河下游河床演變」,科學出版社,224。 21. 謝鑒衡、丁君松、王運輝,(1987),「河床演變與整治」,水利電力出版社,pp:4-35。 22. 丸山利輔,富日正彥,小林慎太郎、藤森新作,(1979),「複合水筒模式於廣域水收支解析之應用-1.複合水筒模式之特徵與構成」,日本農業土木學會誌47:19-24。(日文) 23. 中桐貴生、渡邊紹裕、堀野治彥、丸山利輔,(1999),「紀川流域中流域水循環模式之開發(Ⅰ) 」,農業土木學會論文集,198:899-909。(日文) 24. 佐藤照子、植原茂次,(1980),「以水筒模式解析都市化後的洪水出流特性」,國立防災科學技術中心研究報告,第24 號,第145-158 頁。(日文) 25. 飛驊川濁水問題技術對策審議會,(1981),「飛驊川濁水現象調查報告書」,中部電力株式會社。 26. Baker, V.R., Kale, V.S., (1998).The role of extreme floods in shaping bedrock channels ,in: K.J. Tinkler, E. Wohl (Eds.). Rivers Over Rock: Fluvial Processes in Bedrock Channels, Monograph, vol. 107, American Geophysical Union, Washington, DC (1998), pp. 153–165 27. Bathurst, J. C., Burton A., andWard T. J., (1997). ”Debris flow run-out and landslide sediment delivery tests.” Journal of Hydraulic Engineering, 123(5): 410–419 28. Benson, M. A. and Thomas, D. M., (1966). “A Definition of Dominant Discharge.” Bulletin International Association Scientific Hydrology, 11: 76-80. 29. Boix-Fayos, C., Barbera, G. G., Lopez-Bermudez, F., and Castillo, V. M., (2007). “Effects of check dams, reforestation and land-use changes on river channel morphology: Case study of the Rogativa catchment (Murcia, Spain).” Geomorphology, 91, 103–123. 30. Boix-Fayos, C., Barbera, G.G., Lopez-Bermudez, F. and Castillo, V.M., (2007). “Effects of check dams, reforestation and land-use changes on river channel morphology: Case study of the Rogativa catchment (Murcia, Spain).” Geomorphology, 91: 103–123. 31. Brice JC, (1960). “Index for description of channel braiding.” Geological Society of America Bulletin ,71,1833. 32. Brice JC, (1964). “Channel patterns and terraces of the Loup Rivers in Nebraska.” Geological Survey Professional Paper 422-D. 33. Carlston, C. W., (1965). “The relation of free meander geometry to stream discharge and its geomorphic implicications.” Am. Jour. Sci, v. 263:864-885. 34. Central Geology Survey, (1999). Report og the geological survey of the 1999 Chi-chi Earthquake, Central Geological Survey, Taiwan ( in Chinese). 35. Chang, H.H., (1987). Fluvial Processes in River Engineering, United States of America, pp: 261-297. 36. Chen, C. Y., (2009). “Sedimentary impacts from landslides in Tachia River Basin, Taiwan.” Geomorphology 105, 355-365. 37. Chi, C. C., Lin, Y.X., Deng, H. R., Chen, B. Y., (2004). Typhoon Mindulle-induced landslides and debris flows hazzards - landslides and debris flows interpertation using Formesat-2 in Tachia River Basin. Report of Central Geology Survey in Taiwan ( in Chinese). 38. Daia, F. C. and Leeb, C. F., (2002). ”Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong.” Geomorphology, 42(3-4): 213-228 39. de Vente, J, Poesen, J, Verstraeten, G., (2005). “The application of semi-quantitative methods and reservoir sedimentation rates for the prediction of basin sediment yield in Spain.” Journal of Hydrology, 305(1–4): 63–86 40. de Vente, J., Poesen, J., Bazzoffi, P., Van Rompaey, A. and Verstraeten, G., (2006). “Predicting catchment sediment yield in mediterranean environments: the importance of sediment sources and connectivity in Italian drainage basins.” Earth Surface Processes and Landforms, 31: 1017–1034. 41. Dymond, J. R., Jessen, M. R. and Lovell, L. R., (1999). “Computer Simulation of Shallow Landsliding in New Zealand Hill Country.” JAG, 1(2): 122-131 42. Egozi, R., and Ashmore, P. E., (2008). “Defining and measuring braiding intensity.” Earth Surf. Processes Landforms, 33(14), 2121–2138. 43. Finnegan, N. J., Sklar, L., Fuller, T. K., (2007). ”Interplay of sediment supply, river incision, and channel morphology revealed by transient evolution of an experimental bedrock channel.” Journal of Geophysical Research. 112 F03S11. 44. Flanagan, DC., Ascough, II JC., Nicks, AD., Nearing, MA., Lafle, JM., (1995). “Overview of the WEPP erosion prediction model.” In USDA-Water Erosion Prediction Project. Hillslope Profile and Watershed Model Documentation, Flanagan DC, Nearing MA (eds). USDA: Indiana; 1‧1–1‧12. 45. Foster, GR., Flanagan, DC., Nearing, MA., Lane, LJ., Risse, LM., Finker, SC., (1995). “Hillslope erosion component.” In USDA-Water Erosion Prediction Project. Hillslope Profile and Watershed Model Documentation, Flanagan DC, Nearing MA (eds). USDA: Indiana; 11‧1–11‧12 46. Fredose, J., (1978). “Meandering and Braiding in Rivers.” J. Fluid Mech, 84: 609-624. 47. Fuyii, Y., (1969). “Frequency distribution of the magni-tude of the landslides caused by heavy rain-fall:Seismological.” Society of Japan Journal, 22: 244–247. 48. Germanoski, D. and Schumm, S. A., (1993). "Changes in Braided River Morphology Resulting from Aggradation and Degradation." The Journal of Geology 101: 451-466. 49. Gilbert, G. K., (1914). “The Transportation of Debris by Running Water.” U. S. Geol. Survey, Prof. 86: 259. 50. Hancock, G., Anderson, R. S., (2002). “Numerical modeling of fluvial strach terrace formation in response to oscillationg climate.” Geological Society of America Bulletin. 114, 1131-1142. 51. Harbor, D. J., (1998). “Dynamic equilibrium between an active uplift and the Sevier River, Utah.” Geology. 106 (2), 181-194. 52. Harnischmacher, S., (2007). “Thresholds in small rivers? Hypotheses developed from fluvial morphological research in western Germany.” Geomorphology 92: 119–133 53. Hong LB, Davies TRH. (1979). “A study of stream braiding. ” Geological Society of America Bulletin 90(Part II),1839 –1859. 54. Hooke, J.M., Mant, J.M., (2000). “Geomorphological impacts of a flood event on ephemeral channels in SE Spain.” Geomorphology 34: 163–180. 55. Hovius, N., (1995). “Macro scale process systems of mountain belt erosion and sediment delivery to basins.” Ph.D. thesis, Oxford, United Kingdom, University of Oxford. 56. Hovius, N., Stark C.P. and Allen P.A., (1997). “Sediment flux from a mountain belt derived by landslide mapping.” Geology, 25: 231–234. 57. Howard AD, Keetch ME, Vincent CL., (1970). “Topological and geometrical properties of braided streams.” Water Resources Research 6, 1674–1688. 58. Ishirara, Y. and Kotatake, S., (1979). “Runoff Model for Flood Forecasting” Bull. Disas. Prev. Res. Inst., Kyoto Univ.,. 29, Part 1(260). 59. Johnson, J. P., Whipple, K. X., (2007). “Feedbacks betwwen erosion and sediment transport in experimental bedrock channels.” Earth Surface Processes and Landforms. 32, 1048-1062. 60. Khazai, B. and Sitar, N., (2000). “Assessment of Seismic Slope Stability Using GIS Modeling.” Geographic Information Sciences, 6(2), 121-128 61. Knighton, D., (1984). Fluvial Forms and Processes. 62. Knisel, WG., (1980). “CREAMS, A Field Scale Model for Chemicals, Runoff, and Erosion from Agricultural Management Systems.” US Department of Agriculture, Conservation Research Report no 26. 63. Kondolf, G.M., Piegay, H., Landon, N., (2002). “Channel response to increased and decreased bedload supply from land use change: contrasts between two catchments.” Geomorphology 45: 35–51. 64. Korup, O., (2006). Rock-slope failure and river long profile. Geology. 34, 45-48. 65. Lane, E. W., (1955). “The Importance of Fluvial Morphology in Hydraulic Engineering.” Proc., ASCE, 745(81): 17 66. Lane, E.W., (1957). “A Study of the Shape of Channels formed by Natural Streams Flowing in Erodible Material.” M. R. D. Sediment Series No. 9, U.S. Army Engineering Division, Missouri River, Corps of Engineers. 67. Lee, J. C., Chu, H. T., Angelier, J., Chan, Y. C., Hu, J.C., Lu, C. Y., Rau, R.J., (2002). “Geometry and structure of northern surface ruptures of the 1999 Mw = 7.6 Chi-Chi Taiwan earthquake: influence from inherited fold belt structures.” Journal of Structural Geology. 24, 173-192. 68. Leopold, L.B. and Wolman, M. G., (1957). “River Channel Patterns: Braided, Meandering and Straight.” USGS Professional Paper 282-B, pp: 45-62. 69. Leopold, L.B. and Maddock, T., (1953). “The Hydraulic Geometry of Stream Channels and Some Physiographic Implications.” U. S. Geol. Survey, Prof. Paper 252: 56. 70. Li, R. M., Simons, D. B., (1982). Geomorphological and Hydraulic Analysis of Mountain Streams. Gravel Bed Rivers, 425-441. 71. Li, Ruh-Ming and Simons, D. B., (1982). “Geomorphological and Hydraulic Analysis of Mountain Streams.” Gravel Bed Rivers, 425-441. 72. Lida, T. and Okunishi, K., (1983). “Development of Hillslopes due to Landslides.” Geomorphology, 46: 67-77. 73. Maner, S.B., (1958). “Factors influencing sediment delivery rates in the Red Hills physiographic area.” Transactions of the American Geophysical Union 39: 669-675. 74. Marti, C. and Bezzola G. R., (2006). “Bed load transport in braided gravel-bed rivers.” Special publication number 36 of the international association of sedimentologists, 199-215. 75. Marti, C., Bezzola G. R., (2006). Bed load transport in braided gravel-bed rivers. Special publication number 36 of the international association of sedimentologists, 199-215. 76. Merritts, Dorothy, and Vincent, Kirk R., (1989). “Geomorphic response of coastal streams to low, intermediate, and high rates of uplift, mendocino triple junction region, northern California.” Geological Society of America Bulletin. 101, p. 1373-1388. 77. Mosley, P. M., (1981). “Semi-determinate hydraulic geometry of river channels, South Island, New Zealand.” Earth Surf. Processes Landforms, 6, 127–137, doi:10.1002/esp.3290060206. 78. Mount, N.J., Sambrook Smith, G.H., Stott, T.A., (2005). “An assessment of the impact of upland afforestation on lowland river reaches: the Afon Trannon, mid-Wales.” Geomorphology 64: 255–269. 79. Musgrave, G. W., (1947). “The quantitative evaluation of factors in water erosion: a first approximation.” Journal of Soil and Water Conservation, 2: 133-138. 80. Mutchler, C.K. and Bowie, A.J., (1976). “Effect of land use on sediment delivery tatios. In: Proceedings of the Third Federal Inter-Agency Sedimentation Conference. U.S.” Water Resour. Counc., Washington, D.C., pp. 1-11-1-12. 81. Nixon, M., (1959). “A Study on the Bank-Full Discharge of Rivers in England and Wales.” Proc. Inst. Civil Eng., 12: 157-174. 82. Ohmori, H. and Hirano, M., (1999). “ Magnitude, frequency, and geomorphological significance of rocky mud flows, landcreep, and the collapse of steep slopes.” Z. Geomorph. NF, 67: 55–65. 83. Ohmori, H., (1992). “Morphological characteristics of the scar created by large-scale rapid mass movement.” Japanese Geomorphological Union Transactions, 13: 185–202. 84. Pacific Southwest Inter-Agency Committee (1968). Report of the water management subcommittee on factors affecting sediment yield on Pacific Southwest area. 85. Parker, G., (1978). “Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river.” Journal of Fluid Mechanics, 89 : pp 127-146 86. Phillips, J. D., Slattery, M. C. and Musselman, Z. A., (2005). “Channel adjustments of the lower Trinity River, Texas, downstream of Livingston Dam.” Earth Surface Processes and Landforms, 30: 1419-1439. 87. Pickup, G. and Warner, R. F., (1976)."Effects of hydrologic regime on magnitude and frequency of dominant discharge.” Journal of Hydrology, 29, 51-75. 88. Renard, KG., Foster, GR., Weesies, GA,. McCool, DK., Yoder, DC., (1997). Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). 703. US Department of Agriculture: Washington D.C. Agriculture Handbook. 89. Rhodes, D.D., (1977). “The b-f-m Diagram: Graphical Representation and Interpretation of At-A-Station Hydraulic Geometry.” Amer. J. Sci., 277: 73-96. 90. Rickenmann, D., (1999). “Empirical relationships for debris flows.” Natural Hazards, 19: 47-77. 91. Riley, S. J., (1972). “A Comparison of Morphometric Measures of Bankfull.” Journal of Hydrology, 17: 23-31. 92. Roehl, J.W., (1962). “Sediment source area delivery ratios and influencing morphological factors.” International Association of Hydrological Sciences 59: 202-13. 93. Rusr. B. R., (1978). “A classification of alluvial channel systems.” Canadian Society of Petroleum Geologists, Memoir, 5, 187-198. 94. Sasaki, Y., (1991). “Fractals of slope failure number-size distribution.” J. Jap. Soc. Engng Geol., 32: 1–11. 95. Scheidegger, (1973). “On the prediction of the reach and velocity of catastrophic landslides.” Rock Mechanics, 5: 231–236. 96. Schumm, S. A., (1969). “River Metamorphosis.” Journal, Hydraulics Division, American Society of Civil. Engineering, 95, 255–273. 97. Schumm, S. A., (1977). The Fluvial System, Wiley and Sons, New York. 98. Schumm, S. A., 1993. River response to base level change: Implications for sequence stratigraphy. Geology. 101 (2), 279-294. 99. Schumm, S.A., (1969). “River metamorphosis, Proceedings of the American Society of Civil Engineers.” Journal of the Hydraulics Division 95 (1969), pp. 255–273. 100. Seidl, M. A., Dietrich, W. E., (1992). The problem of channel Erosion into bedrock. Catena Supplement. 23, 101-124. 101. Shepherd, R. C., (1972).” Incised river Meannders: evolution in simulated bedrock.” Science. 178, 409-411. 102. Singh, V.P., (1995). Computer models of watershed hydrology. Water Resource Publications, Highlands Ranch, Colorado, U.S.A. 103. Sklar, L., Dietrich, W. E., (1998). “River longitudinal profiles and bedrock incision models: stream power and the influence of sediment supply. In: Tinkler, K. J., Whol, E. E. (Eds.), Rivers over rocks.” American Geophysical Union Geophysical Monograph. 107, pp.237-260. 104. Sklar, L., Dietrich, W. E., (2001). “Sediment and rock strength controls on river incision to bedrock.” Geology. 29, 1087-1090. 105. Sklar, L., Dietrich, W. E., (2004). “A Mechanistic model for river incision into bedrock by saltating bed load.” Water Resources Research. 40 (6), 63011-630121. 106. Sklar, L., Dietrich, W. E., (2006). “The role of sediment in controlling steady-state bedrock channel slope: implicaations of saltation-abrasion incision model.” Geomorphology. 82, 58-83. 107. Smith, D. D., (1941). “Interpretation of soil conservation data for field use.” Agricultural Engineering, 22:173-175 108. Smith, D.D., and Whitt, D.M., (1947). “Evaluating soil losses from field areas of claypan soils.” SoilScience Society of American Proceedings, 29: 394-396. 109. Snyder, N. P., Whipple, K. X., Tucker, G. E. and Merritts, D. J., (2003). “Importance of a stochastic distribution of floods and erosion thresholds in the bedrock river incision problem.” Journal of Geophysical Research. 108(B2), 2117 110. Snyder, N.P., and Hodges, K.V., (2000). “Depositional and tectonic evolution of a supradetachment basin: 40Ar/39Ar geochronology of the Nova Formation, Panamint Range, California.” Basin Research. 12(1). 19-30 111. Sugai, T., Ohmori, H. and Hirano, M., (1994). “Rock control on magnitude-frequency distributions of landslides.”Trans. Jap. Geomorph. Union,15: 233–251. 112. Sugawara, M., (1974). “Tank model and its application to Bird Creek, Wollombi Brook, Bikin Rive, Kitsu River, Sanaga River and Namr Mune.” Research Note of the National Research Center for Disaster Preventions, 11: 1–64. 113. Sugawara, M., (1979). “Automatic cfalibration of the tank model.” Hydrolic Science Bulletin. 24(3): 375–388. 114. Sugawara, M., (1995). Tank model. In: Singh, V.J., Editor, 1995. Computer Models in Watershed Hydrology, Water Resources Publications, Co, USA, pp. 165–214. 115. SWCB, (2001). Council of Agriculture, Soil and Water C onservation Bureau. Report of Typhoon Toraji induced Landslides Investigation ( in Chinese). 116. Turowski, J. M., Lague, D., Huvious, N., (2007). “The cover effect in bedrock abrasion: A new derivation and its implications for modeling of bedrock channel morphology.” Journal of Geophysical Research. 112, F04006. 117. Van Doren, C.A. and Bartelli, L. J., (1956). “A Method of Forecasting Soil Losses.” Agriculture Engineering, 37: 335-341. 118. Vanoni, V. A., (1975). Sediment engineering, ASCE. 119. Verstraeten, G., Poesen, J., de Vente, J. and Koninckx, X., (2003). “Sediment yield variability in Spain: a quantitative and semiqualitative analysis using reservoir sedimentation rates.” Geomorphology, 50(4): 327–348. 120. Vigilar, G. G., Diplas, P., (1997). “Stable chhanels with mobile bed: formulation and numerical solution.” Journal of Hydraulic Engineering. 123, 189-199. 121. Walling, D. E., (1983). “The sediment delivery problem.” J. Hydrol., 65: 479~493. 122. Whipple, KX, Tucker, GE., (1999). “Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and reseach needs.” Journal of Geophysical Research. 104:17661–17674 123. Whipple, K. X., Tucker, G. E., (2002). “Implications of sediment- flux-dependent river incision models for landscape evolution.” Journal of Geophysical Research. 107, 2039. 124. Whitehouse, I. and Griffiths, GA., (1983). “Frequency and hazard of large rock avalanches in the central Southern Alps, New Zealand.” Geology, 11: 331–334. 125. Williams, J. R., (1977). “Sediment delivery ratios determined with sediment and runoff models.” Erosion and Solid Matter Transport in Inland Waters (Proc. Paris Symp., July 1977), 168-179. IAHS Publ. no. 122. 126. Williams, J. R., and Berndt, H. D., (1972) “Sediment Yield Computed with Universal Equation.” Journal of the Hydraulics Division, 98(12): 2087-2098 127. Williams, J.R., (1975). “Sediment routing for agricultural watersheds.” Water Resources Bulletin, 11(5): 965-974. 128. Wischmeier, W.H. and Smith, S.S., (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains, Agriculture Handbook No. 282, US Department of Agriculture, Washington, DC (1965). 129. Wischmeier, W.H. and Smith, S.S., (1978). Predicting rainfall-erosion losses: a guide to conservation planning, Agriculture Handbook No. 537, US Department of Agriculture, Washington, DC (1978). 130. Wobus, C. W., Tucker, G. E., Anderson, R. S., (2006). “Self-formed bedrock channels.” Geophysical Research Letters. 33, L18480. 131. Wolman, M. G., (1955). “The natural channel of Brandywine Creek, Pennsylvania, U.S..” Geological Survey Professional Paper, 271. 132. Young, R. A., Onstad, C. A., Bosch, D. D. and Anderson, W. P., (1987). AGNPS, Agricultural Nonpoint Source Pollution Model: A large watershed analysis tool. Conservation Research Report 35. Agricultural Research Service, USDA, Washington, D.C. 77pp. 133. Young, R. A., Onstad, C. A., Bosch, D. D. and Anderson, W. P., (1989).” AGNPS: A nonpoint-source pollutionmodel for evaluating agricultural watersheds.” Journal of Soil and Water Conservation, 44(2): 168-173. 134. Zingg, R.W., (1940). “Degree and length of land slope as it affects soil loss in run-off.” Agricultural Engineering, 21: 59-64.
摘要: 摘要 本研究以石岡壩下游至出海口做為研究河段,探討1975年至2008年間其河川型態演變之趨勢。本研究以河道斷面之水力幾何型態與辮狀指數,定量地證明在2001年至2008年間,河川的辮狀程度有明顯的增加。然而,雖然在1999年集集地震之後,大甲溪上游出現大量的崩塌,並於2005年至2008年間,在石岡壩上游水系中儲存了進1.2億立方公尺的土砂。但在石岡壩到天輪壩間的河道沖淤分析中,僅有210萬立方公尺的土方經水流運移而進入石岡壩庫區,且多數被囚阻在石岡壩上游,無法成為研究河段中之輸砂來源。因此本研究以水筒模式探討流域洪水特性之演變,發現2004年後之洪水事件之頻率與洪峰流量有增加的趨勢。加以研究河寬之辮狀程度與河寬亦在2001年至2005年間之出現增加與展寬的現象,故知流域降雨所形成之洪水事件為主導本研究河段演變之主要營力因子。而洪水沖蝕河岸基腳,在2001年至2005年間與2005年至2008年間,平均每年因河岸崩塌而成為河道輸砂的土方量分別有197萬立方公尺與140萬立方公尺,且多數泥砂皆被水流帶出河口。故可知,在沒有上游河段來砂的條件下,河岸崩塌之土方量足以使研究河段在2001年至2008年間形成並維持辮狀河川之河型態特性。
To understand the influence of Shih-Kang Dame to the changes of river morphology, this study analyzed a 26km long reach between the river mouth and Shih-Kang Dam in Dajia River from 1975 to 2008. We proved that the degree of the braided intensity increased significantly during 2001 and 2008. Although the Chi-Chi earthquake and typhoons triggered numerous landslides along the slopes after 1999 and 120 million m3 of sediment yield were stored in the river systems. The analysis of sediment transport in the reach between Shih-Kang Dam and Tien-Lun Dam showed that only 2.1 million m3 of sediment was transported through the river reach. Since lots of sediment was deposited upstream the Shih-Kang Dam, the sediment yield of landslide itself couldn’t supply the sediment transport to the study reach. Therefore, this study analyzed the evolution characteristics of flood event in Dajia Basin by Tank Model, and found that both frequencies and magnitudes of flood events were increasing after 2004. At the same time, braided index and river width were increased from 2001 to 2005. It proved that the flood events in Dajia Basin were the main factor for the evolution of river morphology in the study reach. Furthermore, the annual volume of sediment supplied from the riverbank collapse was 1.97 million m3 and 1.4 million m3 from 2001 to 2005 and 2005 to 2008 respectively, and most of the sediment could be transported to the estuary. Therefore, it can be proved that the sediment transport supplied from the river bank collapse could maintain the braided morphology of the study reach from 2001 to 2008.
URI: http://hdl.handle.net/11455/33172
其他識別: U0005-3107201214282900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3107201214282900
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.