Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/33177
標題: 山區道路邊坡背拉式擋土排樁之穩定機制研究
Stabilization Mechanism of Tied-Back Retaining Piles for Cut Slope in Mountainous Area
作者: 林韋君
Lin, Wei-Jyun
關鍵字: 背拉式擋土排樁
tie-back retaining pile
打設間距
排樁長度
錨碇段長度
入岩深度比
穩定性安全係數
installation spacing
pile length
anchorage length
bedrock penetration ratio
factor of safety (FS value)
出版社: 水土保持學系所
引用: 1.中國土木水利工程學會(2001),「地錨設計與施工準則暨解說」,第三版,科技圖書有限公司。 2.王少濂(2003),「砂土中擴座地錨互制行為之研究」,朝陽科技大學,碩士學位論文。 3.台灣省政府山地農牧局(1989),「台灣省崩塌地調查報告」,農委會山地工作報告,24(2):110-139。 4.行政院農委會水土保持局(2012),水土保持相關法規彙編,水土保持技術規範。 5.行政院農委會林務局(2011),「林道邊坡損壞類型調查、監測、檢測及治理工法研究」,第一次期中報告,晟太工程顧問公司執行。 6.行政院勞工委員會勞工安全衛生研究所(2000),施工安全技術手冊。 7.行政院內政部營建署(2001),建築物基礎構造設計規範。 8.行政院內政部建築研究所(1998),建築技術規則建築構造編基礎構造設計規範(含解說)。 9.林務局羅東林區管理處(2012) ,「宜專一線與翠峰景觀道路地滑與地錨監測成果」,勇霖工程顧問有限公司執行。 10.邱倍堅(2012),「擋土止滑排樁穩定邊坡之力學行為三維數值分析」,國立中興大學水土保持學系,碩士學位論文。 11.吳俊茂(2002),「台中盆地中地錨錨碇行為之研究」,朝陽科技大學,碩士學位論文。 12.洪如江、林美聆、陳天健、王國隆(2000),「921 集集大地震相關的坡地災害坡地破壞特性與案例分析」,地工技術,Vol 81, pp.17-31。 13.洪進宗(2009),「可回收式地錨在粉質砂層錨碇行為研究」,國立成功大學,碩士學位論文。 14.倪至寬(2004),「基礎施工與品管」,詹式書局,台北,461頁。 15.徐松圻(2004),「台中市傾斜地錨卵礫石層中地錨錨碇行為之研究(III)」,行政院國家科學委員會專題研究計畫成果報告,NSC 93-2211-E-324 -003 。 16.唐小雯(2006),「沉泥質砂土中背拉式地錨之錨碇行為」,朝陽科技大學,碩士學位論文。 17.莊棓凱(2003),「砂土中傾斜擴座地錨之錨碇行為」,朝陽科技大學,碩士學位論文。 18.許世宗(2005),「沉泥質砂土中背拉式地錨受力行為之研究(I)-承拉式摩擦型地錨」,行政院國家科學委員會專題研究計畫成果,NSC94-2211-E-324-009。 19.陳珍貴(1991),「砂土中地錨間距對錨碇行為影響之模型研究」,國立台灣工業技術學院,碩士學位論文。 20.陳國峻(2007),「砂土中矩陣排列之群錨受力行為」,朝陽科技大學,碩士學位論文。 21.陳志瑋(2008),「粉土質砂土中摩擦型群錨之垂直受力行為」,朝陽科技大學,碩士學位論文。 22.黃俊豪(2002),「擋土排樁穩定邊坡-數值分析探討」,國立台灣大學土木工程學系,碩士學位論文。 23.張俊隆(2009),「邊坡抗滑排樁側向土壓力現地量測之規劃設計與判釋」,國立雲林科技大學營建工程系,碩士學位論文。 24.廖洪鈞、陳珍貴和張光甫(1993),「緊密砂土中地錨間距對擴座地錨錨碇行為影響之研究」,中國土木水利工程學刊,第五卷,第45~55 頁。 25.廖洪鈞、許世宗、何思漢和林鈺恆(2005),「砂土中擴座地錨互制行行為之研究」,第十一屆大地工程研討會,論文編號:NSC-92-2211-E-324-009。 26.廖洪鈞(1992),「砂土中單段錨碇端受力行為和群錨行為之研究」,行政院國家科學委員會專題研究報告,NSC80-0410-E-011-16。 27.樊成(1995),「全套管式基樁施工與品質」,地工技術雜誌,第52 期,第37-48 頁。 28.Ashour M. and Ardalan H. (2012) , Analysis of pile stabilized slopes based on soil–pile interaction, Computers and Geotechnics, 39, pp. 85–97. 29.BSI (1989), BS7000:Guide to Managing Product Design, British Standards Institution, London. 30.Chen C.Y. and Martin G.R. (2002), Soil-structure interaction for landslide stabilizing piles, Computers and Geotechnics, Elsevier, No.29, pp. 363-386. 31.Cai F. and Ugai K. (2000), Numerical analysis of the stability of a slope reinforced with piles, Soils Found, 40(1), pp. 73–84. 32.Das B.M. (2007), Principles of Foundation Engineering, 6th ed., Thomson Canada, Ltd., 445p. 33.Duncan, J. M. and Wright, S. G. (2005). Soil Strength and Slope Stability, Wiley, New Jersey. 34.De Beer E.E. and Carpentier, R. (1977), Discussion of Methods to Estimate Lateral Force Acting on Stabilizing Piles, Soils and Foundations, Vol. 17, No. 1, pp. 68-82. 35.FIP Commission on Practical Construction (1982),Recommendations for the Design and Construction of Prestressed Concrete Ground Anchors, FIP, Wexham Springs,pp.31. 36.Fleming ,W.G.K., Weltman ,A.J., Randolph, M.F. and Elson,W.K. (1985), “Piling Engineering,”pp.183~216. 37.Getzler Z., Komovnik A. and Mazurik A. (1968), Model study on arching above buried structures, Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM5, Paper 6105, pp. 1123-1141. 38.Hobst, L., and Zajic, J. Z. (1983), “Anchoring in Rock and Soil,” Elsvier Scientific Publishing Company, New York. 39.Hanna, T. H., Sparks, R., and Yilmaz, M. (1972), “Anchor Behavior in Sand, ”Journal of the Soil Mechanics and Foundation Division, ASCE, Vol .98, No. 11, pp. 1187~1208. 40.Habib, P. (1989), Recommendations for the Design, Calculation, Construction and Monitoring of Ground Anchorages, A.A. Balkema Publishers. 41.Ito T. and Matusi T. (1975), Methods to estimate lateral force acting on stabilizing piles. Soils and Foundations, Vol.15, No. 4. 42.Jeng, S. F. and Huang, H. T(1999). “The Holding Mechanism of Under-reamed Rockbolts in Soft Rock.”,International Journal of rock Mechanics and Mining Sciences,Vol.39 pp.761~775。 43.Jeong S, Kim B, Won J and Lee J. (2003), Uncoupled analysis of stabilizing piles in weathered slopes, Comput Geotech, 30(8), pp. 671–82. 44.Joseph E. Bowles (2001), Foundation Analysis and Design 5th., McGraw-Hill., 768p. 45.Larnach, W. J. and McMullan, D. J. (1975), “Beavior of Inclied Groups of Plate Acchors in Dry Sand.” Diaphragm Walls and Anchorages, Institution of Civil Engineers, London, pp.153~156. 46.Liao, H. J., Chen, J. K. and Hsu, S. T. (1996), “Interactive Behavior of Cylindrical Anchors in Dense Sand.” Journal of Southeast Asian Geotechnical Society, EI, Vol.27, No. 1, pp.21~36. 47.Meyerhof, G. G. and Adams J. I. (1968), “The Ultimate Uplift Capacity of Foundations.” Canadian Geotechnical Journal, Vol. 5, pp. 225~244, 1968. 48.Poulos H. G. (1995), Design of reinforcing piles to increase slope stability, Can Geotech J 1995, 32, pp. 808–18. 49.Schnabel, H. (2002), Tiebacks in Foundation Engineering and Construction,A.A. Balkema Publishers. 50.Terzaghi, K. and Peck, R.B. (1967), Soil Mechanics in Engineering Practice, 2ed John Wiley & Sons, Inc., 729p. 51.Wang, W.L., and Yen, B.C. (1974), “ Soil arching in slopes” , Jounal of the Geotechnical Engineering, ASCE, Vol. 100, No. GT1, PP. 61~78. 52.Won J., You K., Jeong S and Kim S. (2005), Coupled effects in stability analysis of soil–pile systems, Comput Geotech, 32(4), pp.304–15. 53.Wei W. B. and Cheng Y. M. (2009), Strength reduction analysis for slope reinforced by piles, Computers and Geotechnics, 36(7), pp.1176–1185.
摘要: 本研究首先針對林務局(Forestry Bureau)羅東林區管理處(Luodong Forest District Office)2012年度宜專一線(Yi Zhuan first road)地滑區與地錨監測成果,進行三維有限元素數值分析,以檢核背拉式擋土排樁穩定邊坡之穩定性及其穩定機制。隨之,將施工過程之穩定性模擬結果(安全係數及破壞型態)與現場監測成果(潛在滑動面位置)進行比對後,可驗證背拉式擋土排樁穩定邊坡之穩定性數值分析程序及其所採用材料模式參數之有效性。同時,建立崩積層─均質邊坡與崩積層/岩層─異質邊坡兩組虛擬模型邊坡,並針對背拉式擋土排樁之各項設計參數進行數值試驗。在數值模型中,選用上、下邊坡之坡度(αu =30o, αd =40o)、排樁之打設長度(Lp)及打設間距(S/D),以及地錨之錨碇段長度(Lg)、地錨傾角(θ)及地錨預力(Ta)作為數值變數,以測試其對邊坡穩定性及背拉式擋土排樁結構力學行為之影響。 現況模擬結果顯示:蘇拉(Saola)颱風期間,宜專一線10.8K地滑區邊坡,與未整治者比對,背拉式擋土排樁穩定工整治後之潛在滑動面,將被侷限在上邊坡很小的區域,且穩定性安全係數(FS值),由FS=1.589提升為 1.609。雖然FS值增加有限,但整治後之潛在滑動面,在臨界狀態時(FS=FSmin)之總變位增量較未整治者則大幅減小。 其次,從均質邊坡之背拉式擋土排樁數值試驗結果可知:(1)當提高地錨預力Ta:40,50,60 t時,預力對邊坡穩定性並無影響。因此,藉由增加地錨預力來提升邊坡穩定性,其效果有限;若地錨傾角θ=10o~45o(以5o增量來改變),則θ=35o時之FS值最大。其原因為:其潛在滑動面與θ=35o之地錨大致垂直。(2)在各種打設間距(S/D=間距/樁徑=5~9)條件下,若將排樁打設長度(Lp=6、9、12 m)加深,則FS值隨之增加,且施作之地錨能縮小滑動面發展之範圍,進而有效提升擋土排樁之抗滑能力。(3)若排樁打設間距增加,FS值將逐漸減小,且當打設間距S/D>8時,FS值將大幅下降。此結果為:在S>8D之情況,由於打設間距過大,使得排樁間之拱效應消失所導致。(4)在固定地錨總長度之情況下,逐漸增加地錨之錨碇段長度(Lg),雖然FS值亦會隨之提升,但終將趨於定值。 最後,由異質邊坡之背拉式擋土排樁數值試驗結果可知:(1)在打設間距S/D =8之條件下,FS值隨著排樁入岩深度增加而提升。且當排樁入岩深度比Rr=Lpr/Lpc=2/6到3/6時,排樁樁身之撓曲曲率M/EI及剪力分布已趨於一致,且FS值亦趨於定值。由此可知排樁入岩深度比Rr=2/6為較安全且經濟之入岩深度比。(2)在Rr=3/6之情況下,若提高排樁打設間距:S=6D,8D,10D時,其FS值將逐漸減少,且當S>8D時,其FS值將大幅下降,此結果與均質邊坡之情況相同。而排樁樁身之撓曲曲率及剪力分布皆隨著排樁打設間距加大而顯著增加。(3)在固定排樁打設間距S/D=8及排樁入岩深度比Rr=3/6之條件下,FS值隨著錨碇段長度(Lg)增加而提升,但當錨碇段長度Lg:7到10 m時,錨碇段長度對邊坡穩定性之提升效果並不明顯。此顯示在固定地錨總長度之情況下,逐漸增加地錨之錨碇段長度(Lg),雖然FS值亦會隨之提升,但終將趨於定值。(4)在背拉式擋土排樁打設條件相同之情況下,崩積層/岩層-異質邊坡之FS值均高於崩積層-均質邊坡者。
  Firstly, this study performed a series of three-dimensional (3-D) finite element analyses to investigate the stability and stabilization mechanism of tie-back retaining pile of landslide at Yi-Zhuan No. 1 forest road (or Yi-Zhuan-No.1 Landslide) using monitoring data of tie-back anchors. Subsequently, comparing the factor of safety and failure mode of simulation with those of field monitoring, one can verify the validities of numerical procedures and material model parameters in the stability analyses of tie-back retaining pile stabilized slope. Meanwhile, two groups of fictitious model slopes, namely, homogeneous slope with colluviums and heterogeneous slope with colluviums on bedrock, were established to carry out a systematic numerical experiment on various design parameters of tie-back retaining pile. In numerical experiments, the numerical variables consist of the inclination angle of up and down slopes (αu =30o, αd =40o); pile length (Lp) and spacing ratio (S/D=pile spacing/pile diameter) of retaining pile, and anchorage length (Lg), inclination (θ) and preloading of anchor (Ta). The effects of numerical variables on the slope stability and mechanical behaviors of tie-back retaining pile were also detected.   According to the field simulation, comparing the potential sliding surfaces at the mileage of 10.8 K of Yi-Zhuan-No.1 Landslide before and after installation of tie-back retaining pile, it was found that the stabilization works enable to refrain the potential sliding surface at a relative small area of up slope and this promotes the factor of safe FS value from 1.589 to 1.609. Although the increase of FS value is limited, the total displacement increment of potential sliding surface at critical condition (FS=FSmin) with stabilization works is much smaller than that without stabilization works.   Finally, based on the numerical experiments of heterogeneous slope with tie-back retaining pile, following conclusions can be drawn: (1) The FS value promotes with the increasing bedrock penetration ratio Rr (=Lpr/Lpc=penetration depth of bedrock/penetration depth of colluviums) of retaining pile. As the Rr ratio varies from 2/6 to 3/6, the distributions of bending curvature M/EI and shear force of pile shaft tend to be identical and the FS value also tends to be unchanged. These indicate that the bedrock penetration ratio Rr = 2/6 (or Lpr=Lpc/3) can be adopted as a construction reference for a economic and safe installation of tie-back retaining pile. (2) For the case of Rr=3/6, the FS value decreases with the increasing installation spacing S from 6D to 10D (S=6D,8D,10D) and greatly decreases as installation spacing S larger than 8 (S>8D). This is coincident with the case of homogeneous slope. In addition, the bending curvature M/EI and shear force of pile shaft increase with the increasing installation spacing. (3) For the case of S/D=8 and Rr=3/6, the FS value increases with the increasing anchorage length (Lg). However, the promotion of slope stability is not obvious as the anchorage length increases from 7 to 10 m (Lg=7 to 10 m). This indicates that for an anchor with fix total length, although the FS value increases with the increasing anchorage length, it eventually tends to be constant. (4) For an identical installation condition of tie-back retaining pile, the FS value of heterogeneous slope (colluviums on bedrock) always higher than that of homogeneous slope.
URI: http://hdl.handle.net/11455/33177
其他識別: U0005-2208201322511500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208201322511500
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.