Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/33190
標題: 幼葉林地滑地整治工法在降雨條件下之效益評估
Evaluation of remedial work in Youyelin landslide under rainfall conditions
作者: 洪寶發
Hung, Pao- Fa
關鍵字: 地滑地
landslides
潛在滑動面
降雨滲流
安全係數
potential sliding surface
rainfall-induced seepage
factor of safety
出版社: 水土保持學系所
引用: 1.內政部建築研究所,1998,「建築技術規則建築構造編基礎構造設計規範(含解說)」。 2.內政部營建署,2001,「建築物基礎構造設計規範」。 3.朱源民,1999,「土壤邊坡補償性疊加解分析」,淡江大學土木工程學系研究所碩士論文。 4.張國欽,2005,「邊坡在降雨入滲狀況下之穩定性分析與評估」,國立中興大學水土保持學系研究所碩士論文。 5.李金龍,2006,「探討降雨與淺層崩塌關係之大型試驗」,國立暨南國際大學地震與防災工程研究所碩士論文。 6.鄭順隆,2006,「崩塌地降雨-入滲-滲流機制之數值模擬及穩定性分析」,國立中興大學水土保持學系研究所碩士論文。 7.盧建廷,2009,「廬山地滑地降雨誘發滲流及位移之數值分析」,國立中興大學水土保持學系研究所碩士論文。 8.洪于婷,2010,「以鑽掘樁穩定之土壤邊坡分析」,國立臺灣科技大學營建工程系碩士論文。 9.彭之瑋,2010,「降雨條件下梨山地滑地穩定工法之有效性評估」,國立中興大學水土保持學系碩士論文。 10.農委會水保局,1992,「水土保持手冊」。 11.農委會水保局,2003,「水土保持技術規範」。 12.農委會水保局南投分局,2010,「幼葉林地滑地調查規劃成果報告」。 13.行政院農業委員會、台灣省政府農林廳水土保持局、工業技術研究院能源與資源研究所,1992,「崩塌地調查、規劃與設計手冊(地滑篇)」。 14.行政院勞工委員會勞工安全衛生研究所,2000,「施工安全技術手冊」。 15.李光敦,2005,水文學,五南圖書出版公司。 16.渡正亮,1976,「すべリやすい地すべリ防止技術」,地すべり技術,8(1)。 17.渡正亮、小橋澄治,1987,「地すべリ.斜面崩壞の予知と對策」,山海堂。 18.申潤植,1989,「地すベリ工學-理論と實踐」,山海堂。 19.經濟部水利署地理資訊倉儲中心 http://gic.wra.gov.tw/gic/HomePage/。 20.經濟部水利署水利規劃試驗所,2007,「水利工程技術規範-河川治理篇(草案)」。 21.經濟部水利署水資源局,2001,「水文設計應用手冊」。 22.廖洪鈞等,2005,分階式山區道路邊坡崩塌預測模式之建立研究—以阿里山公路為例,第11屆台灣大地工程研討會,C12。 23.廖洪鈞、林郁欽、溫琇玲,2001,鑑別分析法於邊坡安全評估之應用,土木水力,第二十八卷,第二期,第41~55頁) 24.樊成,1995,「全套管式基樁施工與品質」,地工技術雜誌,第52 期,第37-48 頁。 25.方文章,1984,「鑽掘式基樁之施工」,地工技術雜誌,第5期,第21-29頁。 26.鄭克聲、許恩菁、葉惠中,1999,「具隨機碎形特性之暴雨雨型」,台灣水利,47(3):43-54。 27.Arya, L.M., and J. F. Paris., 1981. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Science Society of America Journal, Vol 45. pp: 1023-1030. 28.Anderson, S. A. and Sitar, N., 1995. Analysis of rainfall-induced debris flows, Journal of Geotechnical Engineering, Vol. 121, No. 7, pp. 544-552. 29.Aubertin, M. Mbonimpa, B. Bussiere, and R. P. Chapuis., 2001. A physically-based model to predict the water retention curve from basic geotechnical properties. Submitted to the Canadian Geotechnical Journal for publication. 30.Brace, W. F., Walsh, J. B., and Frangos, W. T., 1968. Permeability of granite under high pressure, J. Geoph. Res., Vol. 73, No. 6, pp. 2225-2236. 31.Brand, E.W., 1981. Some Thoughts on Rainfall Induced Slope Failures, Proceedings of 10th International Conference on Soil Mechanics and Foundation Engineering, pp. 373-376. 32.Brenner, R.P., Tam, H.K., and Brand, E.W., 1985. Field Stress Path Simulation of Rain-Induced Slope Failure, Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, Vol.2, pp. 373-376. 33.Cannon, S.H., and Ellen, S.H., 1985. Rainfall Conditions for Abundant Geology, Vo138(12), pp.267-272. 34.Cai, F., Ugai, K., 2000. Numerical analysis of the stability of a slope reinforced with piles,” Soils and Foundations, Vol. 40, No. 1, pp. 73-84. 35.Chow, V. T., 1951. A general formula for hydrologic frequency analysis. Tran. Am. Geophysical Union, Vo1.32, No 2, pp.231-237. 36.Davis, S. N. and De Wiest, R. J. M., 1966. Hydrogeology, Wiley, New York. 37.Fookes, P.G., Sweeney, M., Manby, C.N.D., and Martin, R.P., 1985. Geological and geotechnical engineering aspects of low-cost roads in mountainous terrain, Engineering Geology, Vol. 21, pp.1-152. 38.Fredlund, D.G., Anqing Xing, and Shangyan Huang., 1994. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Canadian Geotechnical Journal, Vol. 31, pp. 533-546. 39.GEO-SLOPE International Ltd. 2007, User’s Guide of SEEP/W 2007, SLOPE/W2007 and SIGMA/W 2007. 40.Green, R.E. and Corey, J.C., 1971. Calculation of Hydraulic Conductivity: A 41.Greco, V.R., 1996. Efficient Monte Carlo Technique for Locating Critical Slip Surface. Journal of Geotechnical Engineering, Vol.112, No. 7, ASCE, pp. 517-525. 42.Koukis, G. and Ziourkas, C., 1991. Slope instability phenomena in Greece:A statistical analysis, Bulletin of the International Association of Engineering Geology, Vol. 43, pp.47-60. 43.Leroueil S.,Vaunat J, Locat J, Faure R and Lee H., 1996. A geotechnical characterization of slope movements; Proceedings of the VII International Symposium on Landslides, Trondheim, Vol.1, No.1,pp. 53-74. 44.Malkawi, A.I.H, Hassan, W.F. and Sarma, S.K., 2001. Global Search Method for Locating General Slip Surface Using Monte Carlo Technique. Journal of Geotechnical and Geoenvironmental Engineering, Vol.127, No. 8, pp. 688-698. 45.Sharpe, C.F.S., 1938. Landslide and related phenomena, Cloumbia University Press, New York. 46.Sidle, R.C., Swanston, D.N., 1982. Analysis of a Small Debris Slide in Coastal Alaska, Canadian Geotechnical Journal, Vol.19, pp 167– 174. 47.Sitar, N., Anderson, S.A. and Johnson, K.A., 1992. Conditions for initiation of rainfall-induced debris flows. Stability and performance of slopes and embankments: proceedings of a special conference at U.C.Berleley, ASCE. 48.Terzaghi, K., 1950. Mechanisms of Landslides, The Geological Survey of America, Engineering Geology. 49.Ito, T. and Matsui, T., 1975. Methods to estimate lateral force acting on stabilizing piles. Soils and Foundations, Vol.15, No. 4. 50.Varnes, D.J., 1978. Slope Movements and Types and Processes. In: Landslides : Analysis and Control, Transportation Research Board Nat. Ac. Sci. Washington Special Report 176, pp. 11-13. 51.Vulliet L and Hutter K., 1988. Viscous-type sliding laws for landslides. Canadian Geotechnical Journal, Vol.25, No. 3, pp. 467–477. 52.Van Genuchten, M. Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, Vol. 44, pp: 892-898. 53.Wei, W. B. and Cheng, Y.M. 2009. Strength reduction analysis for slope reinforced with one row of piles. Computers and Geotechnics, Vol.36, pp. 1176-1185.
摘要: 本研究彙整幼葉林(You-Ye-Lin)地滑地之地質、降雨及地下水水位等監測資料,進行地滑地之降雨滲流及穩定性數值分析。分析中,採用中央氣象局瑞里雨量站之降雨資料(特定降雨事件)來進行降雨入滲及滲流分析。其中,透過篩分析之粒徑組合,來調整土壤顆粒分佈曲線之均勻係數Cu,以獲得其相應之水力傳導係數函數k(u)~u,並採用以進行降雨入滲及滲流反算分析。將反算之地下水水位模擬值與現地監測值作比對,可驗證數值程序之有效性,並可決定地表崩積層材料之最佳水力傳導係數函數及體積含水量函數之輸入值。分析結果顯示,均勻係數Cu=D60/D10=3.333(D10=0.03 mm、D60=0.1 mm)之狀況下,地下水水位高程模擬值與其監測值之差異最小。 另外,進行極限平衡法邊坡穩定分析,以決定邊坡之潛在滑動面位置。隨之,進行特定降雨和設計雨型之二維有限元素滲流分析,以計算地滑地在整個降雨歷程之穩定性安全係數FS。經由前揭分析可得知,潛在滑動面上各降雨時階之孔隙水壓uw與安全係數FS之變化。其中,在孔隙水壓uw增加之情況下,安全係數FS值將伴隨著下降。同時,土壤飽和度將由未飽和狀態逐漸趨於飽和狀態。 最後,針對排樁之打設位置Rx與排樁之間距/樁徑(=Spile/dpile)比,進行設計變數之參數研究,以決定排樁最佳打設方式。其中,並以配置排樁工法之邊坡地層剖面,進行穩定性及排樁結構力學分析。分析結果顯示,排樁打設位置約落在坡面中點些微偏上邊坡,或縮小打設間距,皆可有效地提升坡地潛在滑動面之穩定性。
This study collected the geological data, rainfall records and monitoring data of groundwater variation of You-Ye-Lin landslide (or Y-Y-L landslide) and performed a series of numerical analyses on the rainfall induced seepage and slope stability. In the analyses, the monitoring rainfall records of Ruei-Li rainfall station of Central Weather Bureau (a specific rainfall event) were adopted for rainfall infiltration and seepage analyses. Meanwhile, the hydraulic conductivity function k(u)~u of soil which is dependent on the pore water pressure u can be determined by adjusting the uniformity coefficient Cu of grain distribution curve and used for the back-analysis of rainfall infiltration and seepage analyses. As a consequence, the validity of the numerical procedures can be verified by comparing the groundwater variations of simulation with those of observation and the optimized inputs of hydraulic conductivity and volumetric water content functions can be obtained. The analyses also illustrate the deviation between numerical simulations and field observations of groundwater variation appear minimum when the uniformity coefficient Cu (=D60/D10) is equivalent to 3.333. In addition, the potential sliding surface of slope was determined by limit equilibrium method at first and subsequently two dimensional finite element seepage analyses were carried out for specific rainfall condition and design rainfall condition to calculate the safety factor of slope stability FS throughout the entire rainfall duration. According to the aforementioned analyses, one can obtain the variations of pore water pressure uw and safety factor FS for each time step of rainfall. The analyses also show that the FS value is descending with the increase of pore water pressure and the degree of saturation of soil changes gradually from unsaturated state to saturated state. Finally, a systematically parametric study was performed on the design variables of retaining pile wall, namely, the variables of installation location, Rx and of spacing/diameter (=Spile/dpile) ratio to determine the optimized installation pattern of retaining pile wall. In which, the soil profile of the slope with installation of retaining pile was prepared for stability and structure analyses. The analysis results reveal that the stability of potential sliding surface of slope can be effectively promoted if retaining pile wall is installed near the midpoint of slope with smaller installation spacing.
URI: http://hdl.handle.net/11455/33190
其他識別: U0005-2101201315305500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2101201315305500
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.