Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/33193
標題: 應用分離元素法及連續體力學法探討地質材料的流動與堆積
Application of the Discrete Element and Continuum Mechanics Methods on the Analyses of Flow and Deposition of Geomaterials
作者: 江志文
Chiang, Chih-Wen
關鍵字: PFC2D
PFC2D
FLO-2D
流槽試驗
豐丘山崩
堆積
FLO-2D
flume test
Fengqiu landslide
runout
出版社: 水土保持學系所
引用: 1. 張健邦(1993),「應用多變量分析」,文富出版社。 2. 吳政貞(2003),「土石流流況數值分析-以溪頭為例」,碩士論文,國立臺灣大學土木工程學研究所。 3. 林明慧(2010),「分離元素模型於地質材料及邊坡之應用」,碩士論文,國立中興大學水土保持學系。 4. 林洋震(2008),「顆粒流從斜坡到水平地形後堆積過程之研究」,碩士論文,國立暨南國際大學土木工程學系。 5. 張光宗、鄭敏杰、陳樹群、褚炳麟(2010),「由野外邊坡資料探討卵礫石層抗剪強度性質」,岩盤工程研討會,高雄,第145-153頁。 6. 彭繼賢(2007),「應用FLO-2D於臺灣中部地區土石流流況分析之研究」,碩士論文,國立臺灣大學工學院土木工程學研究所。 7. 蔣志宏(2007),「分離元素法應用於土石流行為之研究」,碩士論文,朝陽科技大學營建工程系。 8. 鄭敏杰(2011),「以野外調查與分離元素法評估卵礫石層強度性質」,碩士論文,國立中興大學水土保持學系。 9. Corominas, J. (1996). “The angle of reach as a mobility index for small and large landslides.” Canadian Geotechnical Journal, 33, 260–271. 10. Chen, R. H., Kuo, K. J., Chen, Y. N. and Ku, C. W. (2011). “Model tests for studying the failure mechanism of dry granular soil slopes.” Engineering Geology, 119, 51-63. 11. D’Agostino, V., Cesca, M. and Marchi, L. (2010).“Field and laboratory investigations of runout distances of debris flows in the Dolomites (Eastern Italian Alps).” Geomorphology, 115, 294-304. 12. FLO-2D Software Inc. (2009), “FLO-2D users manual”, Version 2009, Nutrioso, AZ: CONTACTUS. 13. Habib, P. (1977).“Note sur le rebondissement des blocs rocheux.”Pubbl ISMES Bergamo, 90 ,123-125. 14. Hair, J. F., Jr., Anderson, R. E., Tatham, R. L. and Black, W. C. (1998). “Multivariate Data Analysis, 5th edition.”Prentice Hall, Inc. 15. Itasca Consulting Group Inc. (2004), “Particle Flow Code in 2 Dimensions”, Version 3.1, Minneapolis, MN: ICG. 16. Ikeya, H. (1989). “Debris flow and its countermeasures in Japan.” Bulletin International Association of Engineering Geologists, 40, 15–33. 17. Labiouse, V. and Heidenreich, B. (2009).“Half-scale experimental study of rockfall impacts on sandy slopes.”Nat. Hazards Earth Syst. Sci., 9, 1981-1993. 18. Legros, F. (2002). “The mobility of long-runout landslides.” Engineering Geology, 63, 301-331. 19. Plackett, R. L. and Burman, J. P. (1946). “The Design of Optimum Multifactorial Experiments.” Biometrika, 33 (4), 305-25. 20. Prochaska, A. B., Santi, P. M., Higgins, J. D. and Cannon, S. H. (2008). “Debris-flow runout predictions based on the average channel slope (ACS).” Engineering Geology, 98, 29-40. 21. Rickenmann, D. and Zimmermann, M. (1993). “The 1987 debris flow in Switzerland: documentation and analysis.” Geomorphology, 8, 175–189. 22. Rickenmann, D. (1999). “Empirical relationships for debris flows.” Natural Hazards, 19, 47–77. 23. Valentino, R., Barla, G. and Montrasio, L. (2008). “Experimental Analysis and Micromechanical Modelling of Dry Granular Flow and Impacts in Laboratory Flume Tests.” Rock Mech. Rock Engng., 41 (1), 153-177. 24. Yang, Q., Cai, F., Ugai, K., Yamada, M., Su, Z., Ahmed, A., Huang, R. and Xu, Q. (2011). “Some factors affecting mass-front velocity of rapid dry granular flows in a large flume.” Engineering Geology, 122, 249-260. 25. Zimmermann, M., Mani, P., Gamma, P., Gsteiger, P., Heiniger, O. and Hunziker, G. (1997). “Murganggefahr und Klimaanderung-ein GIS-basierter Ansatz.” Schlussbericht NFP31, ETH, Zurich. (In German). 26. UCLA Academic Technology Services. “R Data Analysis Examples Canonical Correlation Analysis.” http://www.ats.ucla.edu/stat/R/dae/canonical.htm
摘要: 本研究運用分離元素法(PFC2D)及連續體力學法(FLO-2D)的數值方法進行地質材料的流動與堆積影響範圍的模擬。 首先進行小尺度的流槽模擬,PFC2D及FLO-2D的參數分別透過PB設計篩選出影響堆積的重要因子,得知PFC2D的重要參數為顆粒勁度、顆粒摩擦係數及阻尼比,而FLO-2D為降伏應力與黏滯係數。決定出參數設定的先後順序及各參數的合理值後,使數值模型的堆積狀態能夠模擬真實流槽結果。 探討二數值模型參數間的相關性,將PFC2D及FLO-2D模擬出相似運移距離的參數組合成一筆資料,總共24筆資料利用統計軟體R進行典型相關分析,得到典型相關係數0.9517,且其P值為6.65e-9遠小於0.05,達到統計上的顯著水準,證明二者之間有高相關存在。之後再進行多變數迴歸分析建立二者之間的關係式。 最後以大尺度的豐丘邊坡測試關係式的預測能力。將現地地質材料性質適當轉換成PFC2D的微觀參數,使其能表現出真實地質材料的力學特性。逐步降低顆粒摩擦係數,模擬辛樂克颱風的豪雨潤滑地質材料造成崩塌,使崩塌堆積範圍能與真實情況相符。將此參數透過關係式預測FLO-2D的降伏應力及黏滯係數,預測其運移距離。
The flow and deposition behavior of geomaterials are studied using the software PFC2D of the discrete element method and FLO-2D based on the continuum mechanics theory. The flume tests are used as a small-scale model. The both numerical models are used to simulate a real flume test. The PB design is used to study the relative influence of the parameters on the deposition behavior. For PFC2D, the important parameters are particle stiffness, particle friction and viscous damping, while for FLO-2D, they are yield stress and viscosity. The correlation of the parameters between the two numerical models are studied. The parameters of both the models that yield similar travel distance are collected for canonical correlation analysis through statistical software R. A canonical correlation coefficient 0.9517 is obtained. Its P-value is 6.65e-9, which is less than 0.05. It shows that the parameters of both models have high correlation with each other. And then, the relationships between the parameters of both models are established by multivariate regression analysis. Finally, the Fengqiu landslide is used as a large-scale model to test the prediction of the regression equations. The properties of geomaterials which were obtained from field investigation are transformed into the micro-parameters of PFC2D appropriately. The micro-parameters determined could represent the mechanical properties of geomaterials in the field. The particle friction is reduced to cause slope failure and has the travel distance in the event. The travel distance is simulated by FLO-2D with the yield stress and viscosity predicted by the micro-parameters of PFC2D through the regression equations.
URI: http://hdl.handle.net/11455/33193
其他識別: U0005-0307201216592800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0307201216592800
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.