Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/33212
標題: 擋土止滑排樁穩定邊坡之力學行為三維數值分析
Three-Dimensional Numerical Analysis of the Mechanical Behavior of Retaining Shear Piles Stabilized Slope
作者: 邱倍堅
Chiou, Bei-Jian
關鍵字: 擋土排樁
retaining pile
側向土壓力
入岩深度比
穩定性安全係數
lateral earth pressure
bedrock penetration ratio
factor of safety
出版社: 水土保持學系所
引用: 1. 台灣省公路局五區工程處(1997),台18線五彎(28 k ~31 k)及162甲線(4 k +450~570)地質鑽探及調查工程報告書。 2. 台灣省政府山地農牧局(1989),「台灣省崩塌地調查報告」,農委會山地工作報告,24(2):110-139。 3. 行政院內政部營建署(2001),建築物基礎構造設計規範。 4. 行政院內政部建築研究所(1998),建築技術規則建築構造編基礎構造設計規範(含解說)。 5. 行政院勞工委員會勞工安全衛生研究所(2000),施工安全技術手冊。 6. 行政院農委會水土保持局(2012),水土保持相關法規彙編,水土保持技術規範。 7. 行政院農委會林務局(2011),林道邊坡損壞類型調查、監測、檢測及治理工法研究,第一次期中報告,晟太工程顧問公司執行。 8. 洪如江、林美聆、陳天健、王國隆(2000),「921 集集大地震相關的坡地災害坡地破壞特性與案例分析」,地工技術,Vol 81, pp.17-31。 9. 倪至寬(2004),基礎施工與品管,詹式書局,台北,461頁。 10. 張俊隆(2009),邊坡抗滑排樁側向土壓力現地量測之規劃設計與判釋,國立雲林科技大學營建工程系,碩士論文。 11. 張睦雄、張俊隆、陳建華、蔡魏勇、蔡宗成(2010),公路邊坡抗滑排樁現地土壓力之量測與判釋,台灣公路工程,Vol.36, No.1, pp.2-19。 12. 黃俊豪(2002),擋土排樁穩定邊坡-數值分析探討,國立台灣大學土木工程學系,碩士論文。 13. 廖瑞堂(2001),山坡地護坡工程設計,科技圖書股份有限公司。 14. Ashour M. and Ardalan H. (2012) , Analysis of pile stabilized slopes based on soil–pile interaction, Computers and Geotechnics, 39, pp. 85–97. 15. Cai F. and Ugai K. (2000), Numerical analysis of the stability of a slope reinforced with piles, Soils Found, 40(1), pp. 73–84. 16. Chen C.Y. and Martin G.R. (2002), Soil-structure interaction for landslide stabilizing piles, Computers and Geotechnics, Elsevier, No.29, pp. 363-386. 17. Das B.M. (2007), Principles of Foundation Engineering, 6th ed., Thomson Canada, Ltd., 445p. 18. De Beer E.E. and Carpentier R. (1977), Discussion of Methods to Estimate Lateral Force Acting on Stabilizing Piles, Soils and Foundations, Vol. 17, No. 1, pp. 68-82. 19. Hoek E. and Bray J. (1973), Rock Slope Engineering Revised third Edition . The Institute of Mining and Metallurgy. 358p. 20. Ito T. and Matusi T. (1975), Methods to estimate lateral force acting on stabilizing piles. Soils and Foundations, Vol.15, No. 4. 21. Getzler Z., Komovnik A. and Mazurik A. (1968), Model study on arching above buried structures, Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM5, Paper 6105, pp. 1123-1141. 22. Jeong S, Kim B, Won J and Lee J. (2003), Uncoupled analysis of stabilizing piles in weathered slopes, Comput Geotech, 30(8), pp. 671–82. 23. Joseph E. Bowles (2001), Foundation Analysis and Design 5th., McGraw-Hill., 768p. 24. Khazai, B., and Sitar, N. (2000), Assessment of Seismic Slope Stability Using GIS Modeling. Geographic Information Sciences, 6(2), pp.121-128. 25. Poulos H. G. (1995), Design of reinforcing piles to increase slope stability, Can Geotech J 1995, 32, pp. 808–18. 26. Terzaghi, K. and Peck, R.B. (1967), Soil Mechanics in Engineering Practice, 2ed John Wiley & Sons, Inc., 729p. 27. Wei W. B. and Cheng Y. M. (2009), Strength reduction analysis for slope reinforced by piles, Computers and Geotechnics, 36(7), pp.1176–1185. 28. Won J., You K., Jeong S and Kim S, Coupled effects in stability analysis of soil–pile systems, Comput Geotech 2005, 32(4), pp.304–15.
摘要: 本研究首先針對阿里山五彎仔地滑區之擋土排樁穩定邊坡,進行三維有限元素數值模擬,以檢核邊坡之穩定性及擋土排樁所承受之現地側向土壓力。隨之,將排樁所承受之側向土壓力模擬值與現地量測值進行比對後,可驗證擋土排樁穩定邊坡之數值程序及所採用材料模式參數之有效性。同時,本研究亦建立崩積層邊坡(或均質邊坡)與崩積層-岩層邊坡(或異質邊坡)兩組虛擬模型邊坡,並針對擋土排樁各項設計參數進行數值試驗。數值試驗中,採用邊坡坡角(β)、崩積土單位體積重(γunsat, γsat)、排樁之打設位置(Lx/L)、打設間距(S/D)比及打設長度(Lp)作為數值變數,以測試其對邊坡穩定性及排樁結構力學行為之影響。 在現況模擬方面,阿里山五彎仔地滑區之擋土排樁穩定邊坡之模擬結果顯示,擋土排樁所承受之側向土壓力模擬值與現地量測值相當吻合。其次,從均質邊坡之排樁數值試驗結果可知:(1)在β=25˚之情況,若排樁打設位置較接近坡趾處,則潛在滑動面將會發展於排樁上方邊坡區位。然而,當排樁打設位置逐漸往上邊坡方向移動時,則潛在滑動面會轉而往排樁下方邊坡區位發展。反之,在β=45˚之情況,潛在滑動面大致發展於排樁上方邊坡區位。(2)在各種邊坡坡度(β=25˚~45˚)之情況,若排樁打設位置鄰近邊坡之坡頂或坡趾區域時,則邊坡之穩定性安全係數FSp,對排樁打設長度Lp並不敏感。反之,當排樁打設位置鄰近邊坡坡面之中央區域時,則Lp對FSp有明顯之影響。(3)當排樁打設位置鄰近坡面中央區域時,則FSp將隨Lp之增長而提升,邊坡並可獲得最大穩定性安全係數(FSp)max。(4)當排樁打設間距比(S/D)逐漸增大時,邊坡之FSp將隨著降低。 最後,由異質邊坡之排樁數值試驗結果可知:(1)在β =35˚且排樁入岩深度比Rr (=Lpr/Lpa其中,Lpr=排樁之入岩深度,Lpa=排樁之崩積層貫穿厚度)=3之情況,當排樁打設位置鄰近坡面之中央區域時,邊坡可獲得最大穩定性安全係數(FSp)max。同時,此(FSp)max值亦將隨著排樁打設間距比(S/D)之增大,而逐漸降低。(2)在強度折減穩定性分析中,排樁一旦穿過崩積層進入岩層後,FSp之計算將不受入岩深度多寡之影響。(3)在β=25˚之情況(緩邊坡),當入岩深度比Rr>2時,排樁之最大彎矩值將不受入岩深度之影響而趨於定值。反之,在β =45˚之情況(陡邊坡),當入岩深度比Rr逐漸增加時,排樁之最大彎矩值亦將隨之增加。此說明在陡邊坡之排樁,其最大彎矩發展受入岩深度之影響甚鉅。
Firstly, this study performed a three-dimensional (3-D) finite element numerical analysis on a retaining piles stabilized slope at Ali-Shan Wu-Wantzy landslides (or Ali-Shan landslides) to inspect the slope stability and in-situ lateral earth pressure acting on piles. Subsequently, the lateral earth pressure of simulation was compared with that of measurement to verify the validities of the numerical procedures and input material model parameters. Meanwhile, two groups of fictitious model slope, namely, colluvium slope (homogeneous slope) and colluvium-bedrock slope (heterogeneous slope) were set up for a series of numerical experiments on the design parameters of retaining pile. In the numerical experiments, the slope inclination angle (β), unit weight of colluvium (γunsat, γsat), location of retaining pile (Lx/L), spacing ratio of retaining pile (S/D) and length of retaining pile (Lp) were selected as numerical variables to inspect their influences on the slope stability and the mechanical behaviors of retaining piles. For the simulation of the retaining piles stabilized slope at Ali-Shan landslides, it was shown that the lateral earth pressure of simulation is excellent in agreement with that of measurement. Moreover, the numerical experiments of retaining pile in homogeneous slope reveal that in the case of β=25˚ (mild slope), the potential sliding surface mobilizes at the up slope of the retaining piles if the piles are installed adjacent to the slope toe. Nevertheless, the potential sliding surface turns into mobilizing at the down slope of the retaining piles as the piles are gradually moving toward the up slope. On the contrary, in the case of β=45˚ (steep slope), the potential sliding surface mostly mobilizes at the up slope of the retaining piles. In addition, in the case of β=25˚~45˚ (slope inclination angle of wide range, mild slope ~ steep slope), the factor safety FSp of the slope stabilized by retaining piles are insensitive to pile length Lp if the piles are installed nearby the slope top or slope toe. On the contrary, the pile length Lp becomes influential to the factor safety FSp if the retaining piles are installed adjacent to the central area of the slope. Finally, the numerical experiments of retaining pile in heterogeneous slope demonstrate that in the case of β=35˚ (medium slope) and the bedrock penetration ratio of retaining pile Rr (=Lpr/Lpa,where Lpr and Lpa are the bedrock penetration depth and colluvium penetration depth of retaining pile respectively)=3, the factor safety FSp of the slope approximates a maximum value (FSp)max and the value gradually descents with the increasing installation spacing ratio (S/D) of retaining pile. In the stability analysis of strength reduction method (SRM), the factor safety of slope FSp is not influenced by the bedrock penetration depth once the retaining pile penetrates through the colluvium into the bedrock. In the case of β=25˚ (mild slope), the maximum bending moment of retaining pile is not influenced by the bedrock penetration depth and approximates a constant when the bedrock penetration ratio of retaining pile Rr greater than 2 (Rr>2). On the contrary, in the case of β =45˚ (steep slope), the maximum bending moment of retaining pile increases with the increasing bedrock penetration ratio Rr and this indicates the mobilization of maximum bending moment of retaining pile in steep slope is greatly influenced by the bedrock penetration depth.
URI: http://hdl.handle.net/11455/33212
其他識別: U0005-1008201216324900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1008201216324900
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.