Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34398
標題: Investigations of Typhoon Rainfall Spatial Distribution Variations in Nan Shih Creek Watershed of Northern Taiwan
南勢溪集水區颱風降雨空間分佈變異性之探討
作者: 王仲豪
Wang, Jong-Hao
關鍵字: Nonparametric Statistics
無母數統計
Geostatistics
Semivariogram
Kriging
Areal Reduction Factor
地理統計
半變異函數
克利金法
面積遞減因子
出版社: 水土保持學系所
引用: 1. 中央氣象局,(1958~2001), “颱風調查報告”,台北。 2. 中央氣象局,(2006), “颱風資料”, http://www.cwb.gov.tw. 3. 王如意、何輔仁、謝平城,(1994), “以克利金法應用於坡地集水區水文分析之研究”,行政院農業委員會研究計畫報告。 4. 王如意、易任,(1999), “應用水文學”, 國立編譯館。 5. 王政權,(1999), “地統計學及在生態學中的應用”,科學出版社,北京。 6. 台北水源特定區管理委員會,(1985), “南北勢溪水區治理初步調查規劃報告”,台北。 7. 石棟鑫,(2001), “台灣地區颱風雨降雨型態之分析研究”,國立中央大學土木工程學系碩士論文。 8. 行政院農業委員會水土保持局,(2001), “重建區雨量站址評選之適合性研究”,南投。 9. 行政院農業委員會水土保持局,(2002), “崩塌地調查與持續演變趨勢觀測”,南投。 10. 行政院農業委員會水土保持局,(2006), “土石流防災應變系統”,http://fema.swcb.gov.tw。 11. 芮孝芳,(2004), “水文學原理”,北京。 12. 林金樹、陳峰盛,(2002), “空間統計之半變異數模式對推估降雨量空間分布之影響”,2002中華地理資訊學會年會暨學術研討會。 13. 林淑玲,(2002), “宜蘭地區颱風降雨與地形、空間分布關係之探討”,國立中興大學水土保持學系碩士論文。 14. 林清豐,(1989), “雨量空間分佈特性之研究”,國立台灣大學土木工程學系碩士論文。 15. 徐義人,(2003),“應用水文學”,國立編譯館,台北。 16. 陳文福、王仲豪,(2000), “空間降雨資料模式之研究”, 水土保持學報,32(1):11-24。 17. 陳堯風,(1996), “北部地區降雨面積遞減曲線建立之研究”,國立台灣大學碩士論文。 18. 曹舜評、李汴軍、許中立,(2003), “南勢溪集水區坡地災害之水文特性研究(I) ”,行政院國家科學委員會專題研究計畫。 19. 張仁鐸,(2005), “空間變異理論及應用”,科學出版社,北京。 20. 黃信誠,(2000), “空間統計簡介”,自然科學簡訊,12(3):101-104。 21. 湯國安、趙牡丹,(2001), “地理信息系統”,科學出版社,北京。 22. 經濟部水資源局,(2001), “水文設計應用手冊”,台北。 23. 經濟部水利署,(2000~2003), “台灣地區降雨深度-面積-延時曲線之建立”,台北。 24. 經濟部水利署,(2005), “中華民國九十三年台灣水文年報第一部份-雨量”,台北。 25. 顏月珠,(1987), “應用數理統計學”,三民書局,台北。 26. Armstrong, M., (1998), “Basic linear geostatistcics,” Springer-Verlag, Berlin. 27. Asquith, W. H., and J. S. Famiglietti, (2000), “Precipitation areal-reduction factor estimation using an annual-maxima centered approach,” Journal of Hydrology, 230: 55-69. 28. Bacchi, B., and R. Ranzi, (1996), “On the derivation of the areal reduction factor of storms,” Atmospheric Research, 42: 123-135. 29. Berndtsson, R. and J. Niemczynowicz, (1986), “Spatial and temporal characteristic of high-intensity rainfall in northern Tunisia,” Journal of Hydrology, 87: 285-298. 30. Berndtsson, R., and J. Niemczynowicz, (1988), “Spatial and temporal scales in rainfall analysis-some aspects and future perspectives,” Journal of Hydrology, 100: 293-313. 31. Bernhardsen, T., (1999), “Geographic information systems: an introduction–2nd ed.,” John Wiley & Sons, Inc. NY. 32. Bras, R. L., (1990), “Hydrology: an introduction to hydrologic science,” Addison-Wesley Publishing Company, Massachustts. 33. Chow, V.T., D. R. Maidment, and L. W. Mays, (1988), “Applied Hydrology,” McGraw-Hill Book Company, NY. 34. Creutin, J. D., and C. Oled, (1982), “Objective analysis and mapping techniques for rainfall fields: an objective comparison,” Water Resources Research, 18(2): 413-431. 35. De Michele, C., N. T. Kottegoda, and R. Rosso, (2001), “The derivation of areal reduction factor of storm rainfall from its scaling properties,” Water Resources Research, 37: 3247-3252. 36. Einfalt, T., G. Johann, and A. Pfister, (1998), “On the spatial validity of heavy point rainfall measurements,” Water Science Technology, 37(11): 21-28. 37. Goovaerts, P., (2000), “Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall,” Journal of Hydrology, 228: 113–129. 38. Hershfield, D. M., (1962), “Extreme rainfall relationships,” Proc. ASCE., Journal of Hydraulic Division, 88(6): 73-79. 39. Heywood, I., S. Cornelius, and S. Carver, (1999), “An introduction to Geographical Information Systems,” Addison Wesley Longman, London. 40. Isaaks, H. E., and R. M. Srivatava, (1989), “Applied Geostatistics,” Oxford University Press, Inc., New York. 41. Journel, A. G., and C. J. Huijbregts, (1978), “Mining geostatistics,” Academic Press, London. 42. Köhl, M. and G. Gertner, (1997), “Geostatistics in Evaluating Forest Damage Surveys: Considerations on Methods for Describing Spatial Distributions”, Forest Ecology and Management, 95(1997): 131-140. 43. Kothyari, U. C., and G. J. Garde, (1992), “Rainfall intensity-duration-frequency formula for India,” Journal of Hydraulic Engineering, 118(2): 232-336. 44. Lebel, T., G. Bastin, C. Obled, and J. D. Creutin, (1987), “On the accuracy of areal rainfall estimation: a case study,” Water Resources Research, 23(11): 2123-2134. 45. Miller, H. J., (2004), “Tobler’s first law and spatial analysis,” Annals of Association of American Geographers, 94(2): 284-289. 46. Naoum, S., and I. K. Tsanis, (2003), “Temporal and spatial variation of annual rainfall on the island of Crete, Greece,” Hydrological Process., 17:, 1899-1922. 47. Omolayo, A. S., (1993), “On the transposition of areal reduction factors for rainfall frequency estimation,” Journal of Hydrology, 145: 191-205. 48. Pardo-Igúzquiza, E., (1998), “Comparison of geostatistical methods for estimating the areal average climatological rainfall mean using data on precipitation and topography,” International Journal of Climatology, 18: 1031–1047. 49. Sivapalan, M., and G. Blöscl, (1998), “Transformation of point rainfall to areal rainfall: Intensity-duration-frequency curves,” Journal of Hydrology, 204: 150-167. 50. Skaugen, T., (1997), “Classification of rainfall into small- and large-scale events by statistical pattern recognition,” Journal of Fydrology, 200: 40-57. 51. Veneziano, D., and A. Langousis, (2004), “The rainfall areal reduction factor: A multifractal analysis,” European Geostatistics Union 1st General Assembly, Nice, France. 52. Viessman, Jr. W., G. L. Lewis and J. W. Knapp, (1989), “Introduction to hydrology 3rd edition,” Harper Collins Publishers, NY.
摘要: Rainfall caused by typhoon is not only the important income of water resources, but also the key factor of disturbing the spatial distribution of soil and water resources in Taiwan. It will be help to realize the spatial distribution of soil and water resources and movement of sedimentation for our homeland by studying the spatial variations of typhoon rainfall. Watershed is a unit of topography and an elementary area that applied for the topics of spatial hydrology and sediment movement. This study first used the first law of geography and nonparametric statistics test, and then chose 19 rain gauge stations to analyze the spatial variations of typhoon rainfalls by areal reduction factor curves in the Nam Shih Creek watershed of Northern Taiwan for different durations and return periods. The results of typhoon rainfall spatial distribution from semivariograms analysis of different durations and return periods showed that the range is about 7.4km, and the spatial variation increasing by durations and return periods under the range in this site. The semivariogram models built by former analysis used as the input functions for Kriging that making isohyetal maps by integrating GIS. From the isohyetal maps, we can display the spatial distribution of rainfall caused by typhoons in Nan Shih Creek watershed. The spatial distributions of typhoon rainfall lessen gradually from east to west and south to north in this area. Such being the cases, the apparent spatial variations of typhoon rainfall is in the eastern and southern parts of this watershed. For the sake of understanding the relationship between typhoon rainfall degradation and area of distribution, this study applied the isohyetal maps that drawn in the former part to extract areal reduction factors of different durations and return periods, and forming the areal reduction factor curves. As a result of areal reduction factor curves, the areal reduction factors of typhoon rainfalls decayed with accumulative areas of spatial distribution by the power law. The areal reduction factor curves decrease mildly with the rainfall durations on increasing in the fixed return period. In the condition of fixed durations, the areal reduction factor curves also grow less mildly with the return periods extend. In previously description, it shows that the spatial variations of typhoon rainfall trend unvarying in Nan Shih Creek watershed.
颱風為台灣夏秋兩季常見的天氣現象,其所引發之大量降雨除了為台灣地區每年重要之水資源收獲外,亦為擾動該區水土資源空間分布之主因,同時也是此區域大規模土砂災害如山崩、土石流之啟動因子。故探討並瞭解颱風降雨之空間分布的變異性質,對於台灣水土資源之空間分配,以及土砂運動之掌握皆會有所助益。 集水區為地形劃分之單元,常被作為水文、土砂運動分析等研究之單位區域,故本研究亦以集水區為對象,進行颱風降雨空間變異特性之探討。本研究選擇位於台灣北部地區的南勢溪集水區,並依地理學第一定律,挑選鄰接本區之雨量站,以無母數統計進行檢定篩選後,計選取19個雨量站,以其所紀錄之歷年1小時最大颱風降雨量為基準,推求2、6、12、18及24小時等不同延時之最大颱風降雨量,再應用甘保氏極端值第一類分布分析重現期距為5、10、25及50年等不同頻率年之降雨量,所得結果以地理統計進行分析並建立區域型降雨面積遞減因子曲線,藉以探討集水區颱風降雨量空間分布之變異特性。 由地理統計之半變異函數分析結果顯示,南勢溪集水區颱風降雨空間分布之影響範圍為7.4公里,即各雨量站彼此間的距離如超過此範圍,其雨量資料之空間變異性不隨距離增加而變化;而在影響範圍之內,本區之颱風降雨空間分布會隨降雨延時及重現期距的增加而加大其空間變異程度。 為具體表現本區之颱風降雨空間分布之情形,遂以前項所得之半變異函數作為克利金推估之輸入函數,並應用地理資訊系統建立等雨量線分布圖。由等雨量線圖顯示,南勢溪集水區颱風降雨之分布分別由東向西以及南向北之方向遞減;颱風降雨中心多發生於福山雨量站所在之區域,降雨量則由福山雨量站向東朝下盆雨量站方向遞減;另外,位於本區北端之大桶山雨量所處之區域,則是另一處發生明顯降雨空間變化的地區,故颱風降雨在南勢溪集水區內的分布具有空間變異之特性。 有關颱風降雨量遞減程度如何隨降雨分布面積的改變而變化,遂以所得之等雨量線圖進行不同延時及重現期距之颱風降雨面積遞減因子分析,並建立其隨累積分布面積百分比而變化之降雨面積遞減因子曲線。結果顯示颱風降雨面積遞減因子會隨累積分布面積之增加,依冪定律模式呈現曲線型態之衰減。
URI: http://hdl.handle.net/11455/34398
其他識別: U0005-2106200611325400
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.